留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆极化TE11输出模式旋向可在线切换的相对论磁控管模拟研究

史迪夫 钱宝良

史迪夫, 钱宝良. 圆极化TE11输出模式旋向可在线切换的相对论磁控管模拟研究[J]. 强激光与粒子束, 2021, 33: 073003. doi: 10.11884/HPLPB202133.210124
引用本文: 史迪夫, 钱宝良. 圆极化TE11输出模式旋向可在线切换的相对论磁控管模拟研究[J]. 强激光与粒子束, 2021, 33: 073003. doi: 10.11884/HPLPB202133.210124
Shi Difu, Qian Baoliang. Simulation study on relativistic magnetron with online switchable rotation direction of a circularly polarized TE11output mode[J]. High Power Laser and Particle Beams, 2021, 33: 073003. doi: 10.11884/HPLPB202133.210124
Citation: Shi Difu, Qian Baoliang. Simulation study on relativistic magnetron with online switchable rotation direction of a circularly polarized TE11output mode[J]. High Power Laser and Particle Beams, 2021, 33: 073003. doi: 10.11884/HPLPB202133.210124

圆极化TE11输出模式旋向可在线切换的相对论磁控管模拟研究

doi: 10.11884/HPLPB202133.210124
基金项目: 国家自然科学基金项目(61901484)
详细信息
    作者简介:

    史迪夫(1987—),男,博士,主要从事高功率微波技术研究

  • 中图分类号: TN128

Simulation study on relativistic magnetron with online switchable rotation direction of a circularly polarized TE11output mode

  • 摘要: 提出了一种圆极化TE11输出模式旋向可在线切换的相对论磁控管。该器件互作用区结构采用同腔型磁控管结构,输出结构采用全腔提取结构,励磁系统采用Helmholtz线圈磁场系统。本文利用全腔提取结构的模式激励理论对该器件的输出模式成分进行了理论分析,利用粒子模拟软件对该器件的工作性能进行了模拟研究。粒子模拟结果表明:在外加电压770 kV和外加轴向磁场0.2 T(方向与微波轴向输出方向同向)的条件下,该器件的工作模式为5π/6模,工作频率为2.35 GHz,输出功率为3.86 GW,功率效率达到55.5%,输出模式为右旋圆极化TE11模式且模式纯度达到99%以上;当外加轴向磁场与微波轴向输出方向反向时,该器件的输出模式即可在线切换为左旋圆极化TE11模式,而其他输出性能基本保持不变。
  • 图  1  RM纵剖面结构

    Figure  1.  Schematic diagram of the longitudinal profile of the RM

    图  2  RM横剖面结构

    Figure  2.  Schematic diagram of the transversal profiles of the RM

    图  3  输入电功率

    Figure  3.  Input electron beam power versus time

    图  4  输出微波功率

    Figure  4.  Output microwave power versus time

    图  5  电场积分幅值

    Figure  5.  Amplitude of electric field integral

    图  6  电场积分频谱

    Figure  6.  Spectrums of electric integral

    图  7  横截面上电子轮辐

    Figure  7.  Electron spokes in the R-θ plane of the RM

    图  8  22.390 ns时输出模式

    Figure  8.  Output mode at 22.390 ns

    图  9  26.744 ns时输出模式

    Figure  9.  Output mode at 26.744 ns

    图  10  输入电功率

    Figure  10.  Input electron beam power versus time

    图  11  输出微波功率

    Figure  11.  Output microwave power versus time

    图  12  电场积分幅值

    Figure  12.  Amplitude of electric field integral

    图  13  电场积分频谱

    Figure  13.  Spectrums of electric integral

    图  14  横截面上电子轮辐

    Figure  14.  Electron spokes in the R-θ plane of the RM

    图  16  26.744 ns时输出模式

    Figure  16.  Output mode at 26.744 ns

    图  15  22.390 ns时输出模式

    Figure  15.  Output mode at 22.390 ns

    表  1  电子轮辐逆时针旋转情况下12腔RM的电子轮辐数n0与输出模式成分的对应关系

    Table  1.   Output mode components of the 12-cavity RM with the electron spokes rotating counterclockwise

    n0 nL,1(TEnL,1 nR,1(TEnR,1
    0 / /
    1 1,1 (5,1)*
    2 2,1 4,1
    3 3,1 3,1
    4 4,1 2,1
    5 (5,1)* 1,1
    6 TEM&(6,1)*
    7 1,1 (5,1)*
    8 2,1 4,1
    9 3,1 3,1
    10 4,1 2,1
    11 (5,1)* 1,1
    12 / /
    *“()”表示括号中的模式为衰减的高阶模式。
    下载: 导出CSV

    表  2  电子轮辐顺时针旋转情况下12腔RM的电子轮辐数n0与输出模式成分的对应关系

    Table  2.   Output mode components of the 12-cavity RM with the electron spokes rotating clockwise

    n0 nL,1(TEnL,1 nR,1(TEnR,1
    0 / /
    1 (5,1)* 1,1
    2 4,1 2,1
    3 3,1 3,1
    4 2,1 4,1
    5 1,1 (5,1)*
    6 TEM&(6,1)*
    7 (5,1)* 1,1
    8 4,1 2,1
    9 3,1 3,1
    10 2,1 4,1
    11 1,1 (5,1)*
    12 / /
    *“()”表示括号中的模式为衰减的高阶模式。
    下载: 导出CSV

    表  3  输出模式成分数值计算结果

    Table  3.   Results of numerical calculation of output mode components

    mode percentage/%
    TEM 0
    TE11 99.97
    TE21 0.02
    TE31 0.01
    TE41 0
    下载: 导出CSV
  • [1] Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 2nd ed. London: Taylor & Francis, 2007.
    [2] Peng Shengren, Yuan Chengwei, Shu Ting, et al. Design of a concentric array radial line slot antenna for high-power microwave application[J]. IEEE Transactions on Plasma Science, 2015, 43(10): 3527-3529. doi: 10.1109/TPS.2015.2392097
    [3] Yuan Chengwei, Peng Shengren, Shu Ting, et al. Designs and experiments of a novel radial line slot antenna for high-power microwave application[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(10): 4940-4946. doi: 10.1109/TAP.2013.2273214
    [4] Fuks M I, Schamiloglu E. 70% efficient relativistic magnetron with axial extraction of radiation through a horn antenna[J]. IEEE Transactions on Plasma Science, 2010, 38(6): 1302-1312. doi: 10.1109/TPS.2010.2042823
    [5] Li Tianming, Li Jiayin, Hu Biao. Studies of the frequency-agile relativistic magnetron[J]. IEEE Transactions on Plasma Science, 2012, 40(5): 1344-1349. doi: 10.1109/TPS.2012.2189025
    [6] Li Wei, Liu Yonggui, Zhang Jun, et al. Experimental investigations on the relations between configurations and radiation patterns of a relativistic magnetron with diffraction output[J]. Journal of Applied Physics, 2013, 113: 023304. doi: 10.1063/1.4774245
    [7] Liu Meiqin, Liu Chunliang, Fuks M I, et al. Operation characteristics of 12-cavity relativistic magnetron with single-stepped cavities[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 3283-3287. doi: 10.1109/TPS.2014.2311458
    [8] Shi Difu, Qian Baoliang, Wang Honggang, et al. A novel TE11 mode axial output structure for a compact relativistic magnetron[J]. Journal of Physics D: Applied Physics, 2016, 49: 135103. doi: 10.1088/0022-3727/49/13/135103
    [9] Shi Difu, Qian Baoliang, Wang Honggang, et al. A novel relativistic magnetron with circularly polarized TE11 coaxial waveguide mode[J]. Journal of Physics D: Applied Physics, 2016, 49: 465104. doi: 10.1088/0022-3727/49/46/465104
    [10] Shi Difu, Qian Baoliang, Wang Honggang, et al. Theoretical investigations on radiation generation of TEM, linearly or circularly polarized TEn1 coaxial waveguide mode in relativistic magnetron[J]. Scientific Reports, 2017, 7: 1491. doi: 10.1038/s41598-017-01583-w
    [11] Zhou Jun, Liu Dagang, Liao Chen, et al. CHIPIC: an efficient code for electromagnetic PIC modeling and simulation[J]. IEEE Transactions on Plasma Science, 2009, 37(10): 2002-2011. doi: 10.1109/TPS.2009.2026477
    [12] Hoff B W, Greenwood A D, Mardahl P J, et al. All cavity-magnetron axial extraction technique[J]. IEEE Transactions on Plasma Science, 2012, 40(11): 3046-3051. doi: 10.1109/TPS.2012.2217758
    [13] Zhang Dian, Zhang Jun, Zhong Huihuang, et al. Analysis of the mode composition of an X-band overmoded O-type Cerenkov high-power microwave oscillator[J]. Physics of Plasmas, 2012, 19: 103102. doi: 10.1063/1.4757636
    [14] Zhang Dian, Zhang Jun, Zhong Huihuang, et al. Asymmetric modes decomposition in an overmoded relativistic backward wave oscillator[J]. Physics of Plasmas, 2014, 21: 093102. doi: 10.1063/1.4894480
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  864
  • HTML全文浏览量:  420
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-31
  • 修回日期:  2021-06-06
  • 网络出版日期:  2021-06-29
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回