留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矩形晶格高偏振、低损耗铋锗镓光子晶体光纤的结构设计及性能分析

谭芳 杨强 霍慕逸 周晶 周德春 许鹏飞

谭芳, 杨强, 霍慕逸, 等. 矩形晶格高偏振、低损耗铋锗镓光子晶体光纤的结构设计及性能分析[J]. 强激光与粒子束, 2021, 33: 101002. doi: 10.11884/HPLPB202133.210128
引用本文: 谭芳, 杨强, 霍慕逸, 等. 矩形晶格高偏振、低损耗铋锗镓光子晶体光纤的结构设计及性能分析[J]. 强激光与粒子束, 2021, 33: 101002. doi: 10.11884/HPLPB202133.210128
Tan Fang, Yang Qiang, Huo Muyi, et al. Structural design and properties study of rectangular lattice high polarization low-loss-Bi-Ge-Ga photonic crystal fiber[J]. High Power Laser and Particle Beams, 2021, 33: 101002. doi: 10.11884/HPLPB202133.210128
Citation: Tan Fang, Yang Qiang, Huo Muyi, et al. Structural design and properties study of rectangular lattice high polarization low-loss-Bi-Ge-Ga photonic crystal fiber[J]. High Power Laser and Particle Beams, 2021, 33: 101002. doi: 10.11884/HPLPB202133.210128

矩形晶格高偏振、低损耗铋锗镓光子晶体光纤的结构设计及性能分析

doi: 10.11884/HPLPB202133.210128
基金项目: 吉林省教育厅“十三五”科学技术项目(JJKH20200565KJ);吉林省科技厅项目(20200401053GX)
详细信息
    作者简介:

    谭 芳,280267488@qq.com

  • 中图分类号: O436

Structural design and properties study of rectangular lattice high polarization low-loss-Bi-Ge-Ga photonic crystal fiber

  • 摘要: 非对称结构光子晶体光纤应用广泛。其良好的偏振特性、灵活的色散调控能力以及低限制损耗品质,对于优化与改善偏振光纤器件、非线性光学光纤、光通信光纤、光纤传感器等性能发挥着关键的作用。选用高折射率铋锗镓激光玻璃为材料,设计了八边形阵列、矩形晶格排列的光子晶体光纤,纤芯缺陷区包层及外包层均为圆形空气孔。模拟实验数据显示,结构参数为M=0.5,0.6时,在波长为1.55 μm处的双折射系数分别为1.16×10−2和1.33×10−2;在近红外波段短波区,矩形晶格结构光子晶体光纤的色散范围分别在±30 ps·nm−1·km−1之间及−18~32 ps·nm−1·km−1之间。色散斜率较低,曲线具有零色散点,展现了良好的连续谱调控能力;在1.00~1.90 μm波段内,当M=0.5,0.6时,光纤限制损耗稳定在10−7~10−9 dB·km−1之间;在1.55 μm处,限制损耗测量值分别为2.32×10−7和1.62×10−8 dB·km−1
  • 图  1  八边形矩形晶格结构

    Figure  1.  Structure of octagon rectangular lattice

    图  2  六边形三角晶格结构

    Figure  2.  Structure of hexagon triangular lattice

    图  3  BGRL-PCF的断面结构以及模场图

    Figure  3.  Section structure and mode field of BGRL-PCF

    图  4  BGTL-PCF的断面图以及模场图

    Figure  4.  Section structure and mode field of BGTL-PCF

    图  5  PCF的折射率曲线

    Figure  5.  neff (λ) curve of PCF

    图  6  光子晶体光纤的双折射系数曲线

    Figure  6.  Birefringence coefficient curves of PCFs

    图  7  光子晶体光纤的色散特性曲线

    Figure  7.  Dispersion characteristics curves of PCFs

    图  8  不同结构光子晶体光纤的限制损耗曲线

    Figure  8.  Limiting loss curves of PCF with different structures

    图  9  2种特定波长限制损耗曲线

    Figure  9.  Limited loss curves with two specific wavelength

    图  10  x/y偏振态功率密度与波长关系

    Figure  10.  Relationship between power density and wavelength of x/y polarization state

  • [1] 贾彩萍, 王春灿. 高功率超连续光谱的光纤产生技术[J]. 光通信技术, 2020, 44(10):42-46. (Jia Caiping, Wang Chuncan. High power supercontinuum with fiber generation technology[J]. Optical Communication Technology, 2020, 44(10): 42-46
    [2] 刘海, 陈灿灿, 张文, 等. 基于光子晶体光纤四波混频效应的甲烷传感测量[J]. 激光与光电子学进展, 2020, 57: 191203

    Liu Hai, Chen Cancan, Zhang Wen, et al. Methane sensing measurement based on photonic crystal fiber four-wave mixing effect[J]. Laser & Optoelectronics Progress,2020, 57: 191203
    [3] 楚秋慧, 郭超, 颜冬林, 等. 高功率窄线宽光纤激光器的研究进展[J]. 强激光与粒子束, 2020, 32: 121004

    Chu Qiuhui, Guo Chao, Yan Donglin, et al. Recent progress of high power narrow linewidth fiber laser[J]. High Power Laser and Particle Beams, 2020, 32: 121004
    [4] 杨军, 苑勇贵, 喻张俊, 等. 光纤偏振器件与组件的分布式串音测量研究进展[J]. 光电工程, 2018, 45:170625. (Yang Jun, Yuan Yonggui, Yu Zhangjun, et al. Recent progress of accurate measurement for distributed polarization crosstalk of fiber optic polarization component and device[J]. Opto-Electronic Engineering, 2018, 45: 170625
    [5] 尚克军, 雷明, 向强, 等. 一种基于集成光学芯片的微小型光纤陀螺[J]. 中国惯性技术学报, 2020, 28(5):650-653. (Shang Kejun, Lei Ming, Xiang Qiang, et al. An integrated optical chip based miniature fiber optic gyroscope[J]. Journal of Chinese Inertial Technology, 2020, 28(5): 650-653
    [6] 王锦丽, 钟春晓, 任喜梅, 等. 小损耗介质中非相干耦合光束的传输特性[J]. 量子电子学报, 2021, 38(1):10-16. (Wang Jinli, Zhong Chunxiao, Ren Ximei, et al. Propagation characteristics of incoherently coupled beams in low loss media[J]. Chinese Journal of Quantum Electronics, 2021, 38(1): 10-16
    [7] 丁思明, 杨四刚, 杨益, 等. 高非线性光子晶体光纤中的声光相互作用[J]. 中国激光, 2019, 46:0508027. (Ding Siming, Yang Sigang, Yang Yi, et al. Interaction of acoustic phonons and photons in highly nonlinear photonic crystal fibers[J]. Chinese Journal of Lasers, 2019, 46: 0508027 doi: 10.3788/CJL201946.0508027
    [8] 赵兴涛, 华露, 蒋国辉, 等. 多孔芯光子晶体光纤及其偏振特性[J]. 发光学报, 2018, 39(5):706-712. (Zhao Xingtao, Hua Lu, Jiang Guohui, et al. Polarization properties of multi-hole core photonic crystal fiber[J]. Chinese Journal of Luminescence, 2018, 39(5): 706-712 doi: 10.3788/fgxb20183905.0706
    [9] 薛璐, 张亚妮, 朱雨雨, 等. 超低损耗低非线性平坦色散光子晶体光纤优化设计[J]. 光子学报, 2018, 47:1106005. (Xue Lu, Zhang Yani, Zhu Yuyu, et al. Optimization design of ultra-low loss low nonlinear flatten dispersion photonic crystal fiber[J]. Acta Photonica Sinica, 2018, 47: 1106005 doi: 10.3788/gzxb20184711.1106005
    [10] 赵原源. 光子晶体光纤色散和非线性效应的理论和实验研究[J]. 电子元器件与信息技术, 2020, 4(8):7-9. (Zhao Yuanyuan. Theoretical and experimental study on dispersion and nonlinear effects of photonic crystal fibers[J]. Electronic Component and Information Technology, 2020, 4(8): 7-9
    [11] 刘旭安, 吴根柱, 陈达如, 等. 基于椭圆孔包层和微型双孔纤芯的新型高双折射光子晶体光纤[J]. 光子学报, 2011, 40(11):1728-1732. (Liu Xu’an, Wu Genzhu, Chen Daru, et al. Novel highly bireferingent photonic crystal fiber based on an elliptical hole fiber cladding and a fiber core of double-micro-hole units[J]. Acta Photonica Sinica, 2011, 40(11): 1728-1732 doi: 10.3788/gzxb20114011.1728
    [12] 廖昆, 廖健飞, 李伯勋, 等. 一种高双折射双零色散的缺陷型光子晶体光纤[J]. 量子电子学报, 2019, 36(1):123-128. (Liao Kun, Liao Jianfei, Li Boxun, et al. A kind of defect photonic crystal fiber with high birefringence and two zero-dispersion[J]. Chinese Journal of Quantum Electronics, 2019, 36(1): 123-128
    [13] 张怡, 葛海波, 吴昊, 等. 一种高双折射低损耗椭圆双芯光子晶体光纤的特性分析[J]. 光通信技术, 2020, 44(5):13-17. (Zhang Yi, Ge Haibo, Wu Hao, et al. Characteristic analysis of an elliptic double core photonic crystal fiber with high birefringence and low loss[J]. Optical Communication Technology, 2020, 44(5): 13-17
    [14] Yang Tianyu, Ding Can, Guo Y J. A highly birefringent and nonlinear AsSe2–As2S5 photonic crystal fiber with two zero-dispersion wavelengths[J]. IEEE Photonics Journal, 2019, 11: 7200307.
    [15] Monir M K, Hasan M, Paul B K, et al. High birefringent, low loss and flattened dispersion asymmetric slotted core-based photonic crystal fiber in THz regime[J]. International Journal of Modern Physics B, 2019, 33: 1950218. doi: 10.1142/S0217979219502187
    [16] 张学典, 聂富坤, 逯兴莲, 等. 基于正四边形晶格的微结构光子晶体光纤的特性分析[J]. 光学仪器, 2017, 39(4):18-24. (Zhang Xuedian, Nie Fukun, Lu Xinglian, et al. The characteristic analysis of microstructure photonic crystal fibers based on regular quadrilateral lattice[J]. Optical Instruments, 2017, 39(4): 18-24
    [17] 杨天宇, 姜海明, 王二垒, 等. 一种近红外波段的高双折射高非线性光子晶体光纤[J]. 红外与毫米波学报, 2016, 35(3):350-354. (Yang Tianyu, Jiang Haiming, Wang Erlei, et al. Photonic crystal fibers with large birefringence and high nonlinearity in near-infrared band[J]. Journal of Infrared and Millimeter Waves, 2016, 35(3): 350-354 doi: 10.11972/j.issn.1001-9014.2016.03.016
    [18] 许强, 赵亚, 刘思聪, 等. 一种新结构高负色散光子晶体光纤[J]. 量子电子学报, 2018, 35(3):332-337. (Xu Qiang, Zhao Ya, Liu Sicong, et al. A novel photonic crystal fiber with high negative dispersion[J]. Chinese Journal of Quantum Electronics, 2018, 35(3): 332-337
    [19] Song Xiangyang, Jin Danyang, Zhou Dechun, et al. Er3+/Yb3+ co-doped bismuthate glass and its large-mode-area double-cladding fiber for 1.53 μm laser[J]. Journal of Alloys and Compounds, 2021, 853: 157305. doi: 10.1016/j.jallcom.2020.157305
    [20] 王刚, 安琳. COMSOL Multiphysics工程实践与理论仿真[M]. 北京: 电子工业出版社, 2012

    Wang Gang, An Lin. COMSOL Multiphysics engineering practice and theory simulation[M]. Beijing: Electronic Industry Press, 2012
    [21] 汪成程, 张峰, 吴根柱. 渐近式太赫兹多孔光子晶体光纤模式特性研究[J]. 激光技术, 2019, 43(6):768-772. (Wang Chengcheng, Zhang Feng, Wu Genzhu. Study on mode characteristics of asymptotic terahertz porous photonic crystal fibers[J]. Laser Technology, 2019, 43(6): 768-772
    [22] 陈波, 杨广强, 张霞. 光子晶体光纤色散特性的理论研究[J]. 测试技术, 2019, 9(4):80-85. (Chen Bo, Yang Guangqiang, Zhang Xia. Theoretical study on dispersion characteristics of photonic crystal fiber[J]. Testing Technology, 2019, 9(4): 80-85
  • 加载中
图(11)
计量
  • 文章访问数:  757
  • HTML全文浏览量:  225
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-02
  • 修回日期:  2021-09-15
  • 网络出版日期:  2021-10-08
  • 刊出日期:  2021-10-15

目录

    /

    返回文章
    返回