留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毫米波回旋速调管放大器的自洽非线性数值模拟

张点 安晨翔 张军 张建德 钟辉煌

张点, 安晨翔, 张军, 等. 毫米波回旋速调管放大器的自洽非线性数值模拟[J]. 强激光与粒子束, 2021, 33: 093002. doi: 10.11884/HPLPB202133.210129
引用本文: 张点, 安晨翔, 张军, 等. 毫米波回旋速调管放大器的自洽非线性数值模拟[J]. 强激光与粒子束, 2021, 33: 093002. doi: 10.11884/HPLPB202133.210129
Zhang Dian, An Chengxiang, Zhang Jun, et al. Self-consistent nonlinear numerical simulation of millimeter wave gyro-klystron amplifiers[J]. High Power Laser and Particle Beams, 2021, 33: 093002. doi: 10.11884/HPLPB202133.210129
Citation: Zhang Dian, An Chengxiang, Zhang Jun, et al. Self-consistent nonlinear numerical simulation of millimeter wave gyro-klystron amplifiers[J]. High Power Laser and Particle Beams, 2021, 33: 093002. doi: 10.11884/HPLPB202133.210129

毫米波回旋速调管放大器的自洽非线性数值模拟

doi: 10.11884/HPLPB202133.210129
基金项目: 国家自然科学基金项目(61771482)
详细信息
    作者简介:

    张 点,zhangdian206@163.com

  • 中图分类号: TM832

Self-consistent nonlinear numerical simulation of millimeter wave gyro-klystron amplifiers

  • 摘要: 为了实现回旋速调管放大器的快速设计,基于经典的回旋管的稳态单模非线性理论方法,开展了回旋速调管放大器的束波作用效率的理论模拟研究。由于单模理论无法匹配回旋速调管放大器的输入腔、中间腔两端的突变边界条件,所以输入腔与中间腔都只能采用给定场法进行求解。回旋速调管的输出腔的功率输出端通常采用缓变结构,这种腔体可以采用单模自洽理论进行求解。对两腔毫米波回旋速调管放大器进行了理论模拟,并与商业粒子模拟软件的结果进行对比,验证了该数值理论模拟方法的有效性。
  • 图  1  回旋速调管数值模拟程序流图

    Figure  1.  Numerical simulation code diagram of gyro-klystron

    图  2  Ka波段两腔二次谐波回旋速调管放大器PIC模型

    Figure  2.  PIC model of a Ka band two cavity second harmonic gyro-klystron amplifier

    图  3  Ka波段两腔二次谐波回旋速调管放大器输入腔内的电子效率

    Figure  3.  Electronic efficiency in input cavity of the Ka band two cavity second harmonic gyro-klystron amplifier

    图  4  Ka波段两腔二次谐波回旋速调管放大器不同位置处的电子相空间图

    Figure  4.  Electron phase space at different stage of the Ka band two cavity second harmonic gyro-klystron amplifier

    表  1  Ka波段两腔二次谐波回旋速调管放大器参数

    Table  1.   Parameters of a Ka band two cavity second harmonic gyro-klystron amplifier

    stageradius/mmlength/mmQfrequency/GHz
    input9.7720.630035.0
    output 9.66 25.3 610 34.96
    drift 7.0 122
    下载: 导出CSV
  • [1] Danly B G, Blank M, Calame J P, et al. Development and testing of a high-average power, 94-GHz gyroklystron[J]. IEEE Transactions on Plasma Science, 2000, 28(3): 713-726. doi: 10.1109/27.887710
    [2] 罗勇. 回旋速调放大器高频系统及注-波互作用研究[D]. 成都: 电子科技大学, 2003

    Luo Yong. High frequency system and beam-wave interaction study of gyro-klystron amplifiers[D]. Chengdu: University of Electronic Science and Technology of China, 2003
    [3] 罗勇, 李宏福. 回旋速调管放大器注-波互作用分析[J]. 强激光与粒子束, 2005, 17(5):724-728. (Luo Yong, Li Hongfu. Study on the interaction between electron beam and waves in gyroklystron amplifiers[J]. High Power Laser and Particle Beams, 2005, 17(5): 724-728
    [4] Chu K R. The electron cyclotron maser[J]. Reviews of Modern Physics, 2004, 76(2): 489-540. doi: 10.1103/RevModPhys.76.489
    [5] Levush B, Blank M, Calame J, et al. Modeling and design of millimeter wave gyroklystrons[J]. Physics of Plasmas, 1999, 6(5): 2233-2240. doi: 10.1063/1.873476
    [6] Latham P E, Lawson W, Irwin V. The design of a 100 mw, Ku band second harmonic gyroklystron experiment[J]. IEEE Transactions on Plasma Science, 1994, 22(5): 804-817. doi: 10.1109/27.338296
    [7] Vlasov A N, Antonsen T M, Jr Chernin D P, et al. Simulation of microwave devices with external cavities using MAGY[J]. IEEE Transactions on Plasma Science, 2002, 30(3): 1277-1291.
    [8] 马俊建, 朱小芳, 金晓林, 等. 回旋速调管放大器时域非线性理论与模拟[J]. 物理学报, 2012, 61:208402. (Ma Junjian, Zhu Xiaofang, Jin Xiaolin, et al. A time-dependent nonlinear theory and simulation for gyroklystron amplifier[J]. Acta Physica Sinica, 2012, 61: 208402 doi: 10.7498/aps.61.208402
    [9] Fliflet A W, Read M E, Chu K R, et al. A self-consistent field theory for gyrotron oscillators: application to a low Q gyromonotron[J]. International Journal of Electronics, 1982, 53(6): 505-521. doi: 10.1080/00207218208901545
    [10] 刘迎辉, 李宏福, 雷朝军, 等. 输入腔高频场的矩阵分析[J]. 强激光与粒子束, 2007, 19(6):931-933. (Liu Yinghui, Li Hongfu, Lei Chaojun, et al. Analysis of RF field in an input cavity by parameter matrix[J]. High Power Laser and Particle Beams, 2007, 19(6): 931-933
    [11] 耿志辉, 刘濮鲲. 回旋速调管放大器输出腔的特性研究[J]. 强激光与粒子束, 2004, 16(11):1445-1448. (Geng Zhihui, Liu Pukun. Characteristic study of output cavity in gyroklystron amplifier[J]. High Power Laser and Particle Beams, 2004, 16(11): 1445-1448
    [12] Geng Zhihui, Liu Pukun. Design of a Ka-band second harmonic gyroklystron amplifier by using a self-consistent nonlinear simulation[J]. IEEE Transactions on Plasma Science, 2006, 34(3): 534-540. doi: 10.1109/TPS.2006.875761
    [13] Zhou Jun, Liu Dagang, Liao Chen, et al. CHIPIC: an efficient code for electromagnetic PIC modeling and simulation[J]. IEEE Transactions on Plasma Science, 2009, 37(10): 2002-2011. doi: 10.1109/TPS.2009.2026477
    [14] 耿志辉. 毫米波回旋速调管放大器的自洽非线性理论与模拟[D]. 北京: 中国科学院研究生院(电子学研究所), 2005

    Geng Zhihui. Self-consistent nonlinear theory and simulation of millimeter wave gyro-klystron amplifier[D]. Beijing: Institute of Electronic, Chinese Academy of Sciences, 2005
    [15] 孙迪敏. W波段三次谐波回旋管理论与实验研究[D]. 北京: 清华大学, 2014

    Sun Dimin. Theoretical and experimental study of W-band third harmonic gyrotrons[D]. Beijing: Tsinghua University, 2014
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  990
  • HTML全文浏览量:  232
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-05
  • 修回日期:  2021-09-05
  • 网络出版日期:  2021-09-14
  • 刊出日期:  2021-09-15

目录

    /

    返回文章
    返回