留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于有限元方法的离子俘获装置模拟计算

张耀锋 尹远 曹蕾 张春雷

张耀锋, 尹远, 曹蕾, 等. 基于有限元方法的离子俘获装置模拟计算[J]. 强激光与粒子束, 2021, 33: 086002. doi: 10.11884/HPLPB202133.210134
引用本文: 张耀锋, 尹远, 曹蕾, 等. 基于有限元方法的离子俘获装置模拟计算[J]. 强激光与粒子束, 2021, 33: 086002. doi: 10.11884/HPLPB202133.210134
Zhang Yaofeng, Yin Yuan, Cao Lei, et al. Simulations of ion trap devices based on finite element analysis method[J]. High Power Laser and Particle Beams, 2021, 33: 086002. doi: 10.11884/HPLPB202133.210134
Citation: Zhang Yaofeng, Yin Yuan, Cao Lei, et al. Simulations of ion trap devices based on finite element analysis method[J]. High Power Laser and Particle Beams, 2021, 33: 086002. doi: 10.11884/HPLPB202133.210134

基于有限元方法的离子俘获装置模拟计算

doi: 10.11884/HPLPB202133.210134
基金项目: 国家自然科学基金项目(11605009)
详细信息
    作者简介:

    张耀锋(1982—),男,博士,从事核技术及应用方向研究

  • 中图分类号: TL811; TL815

Simulations of ion trap devices based on finite element analysis method

  • 摘要: 利用有限元程序ANSYS,开展潘宁离子俘获装置的电场模拟计算。基于电场数据,结合Runge_Kutta_Fehlberg方法进行潘宁装置在多种模式下的离子俘获过程模拟工作,得到了准确的离子俘获结果。并对实际条件下具有偏离理想情况电极分布的俘获装置进行了优化计算及电场分析,同样实现了离子俘获过程的准确模拟。有限元方法用于离子俘获装置的电场计算以及后续离子俘获过程模拟流程的建立,为类似的电势阱离子俘获装置建造运行提供有效的技术支持。
  • 图  1  理想潘宁装置结构示意图

    Figure  1.  Structure of an ideal Penning trap

    图  2  用于ANSYS有限元计算的潘宁装置结构模型

    Figure  2.  Geometry model of a Penning trap in ANSYS

    图  3  潘宁装置间隙区域电场等电势分布结果图(1/4结构)

    Figure  3.  Contour of equal potential for the electric field in the gap of the Penning trap (1/4 of the whole plane)

    图  4  理想潘宁装置离子中运动轨迹图(初始位置x=0.1 cm,y=0,z=0.2 cm)

    Figure  4.  Tracking results for an ion moving in an ideal Penning trap (start from x=0.1 cm, y=0 and z=0.2 cm)

    图  5  充气He气体后,潘宁装置中离子运动轨迹图(初始位置x=0.1 cm,y=0 cm,z=0.2 cm)

    Figure  5.  The tracking results for an ion moving in the Penning trap, with Helium gas filled in (start from x=0.1 cm, y=0 and z=0.2 cm)

    图  6  环形电极四极场激励电势施加方法

    Figure  6.  The way to apply the quadrupole excitation potential on the ring electrodes

    图  7  潘宁装置中充入He气体加四极场激发时离子运动轨迹图($\omega = {\omega _{\rm{c}}}$)(初始位置x=0.1 cm,y=0,z=0.2 cm)

    Figure  7.  Tracking results for an ion moving in the Penning trap, with helium gas filled in and quadrupole electric potential applied (start from x=0.1 cm, y=0 and z=0.2 cm), here $\omega = {\omega _{\rm{c}}}$

    图  8  环形电极施加激发±10 V电势时所产生电场的等电势分布图

    Figure  8.  Equal potential distribution when the excitation potential of ±10 V applied on the ring electrodes

    图  9  气隙区域不同半径范围内真实电势分布与理想四极场的偏离情况

    Figure  9.  Relative error between the real distribution of the potential of the gap and the ideal quadruapole distribution, varying with different radii

    图  10  优化的离子俘获装置环形电极结构平面图

    Figure  10.  Diagram of the ring electrodes for an optimized Penning trap

    图  11  x-y平面内离子运动轨迹投影图,起点位于x=0.1 cm,y=0 cm处

    Figure  11.  Projection of the motion of an ion upon x-y plane, the starting point is x=0.1 cm and y=0 cm

  • [1] Hoogerheide S F, Naing A S, Dreiling J M, et al. Experments with highly-ionized atoms in unitary Penning traps[J]. Atoms, 2015, 3: 367-391. doi: 10.3390/atoms3030367
    [2] Paul W, Osberghaus O, Fischer E. Forschungsberichte des Wirtschafts- und Verkehrsministeriums Nordrhein-Westfalen[M]. Berlin: Springer, 1958.
    [3] Blaum K, Novikov Y N, Werth G. Penning traps as a versatile tool for precise experiments in fundamental physics[J]. Contemporary Physics, 2010, 51(2): 149-175. doi: 10.1080/00107510903387652
    [4] Bollen G, Becker S, Kluge H J, et al. ISOLTRAP: A tandem Penning trap system for accurate on-line mass determination of short-lived isotopes[J]. Nuclear Instruments and Methods in Physics A, 1996, 368(3): 675-697. doi: 10.1016/0168-9002(95)00561-7
    [5] Miao Wang. Halo ion trap mass spectrometry: Design, instrumentation, and performance[D]. Provo: Brigham Young University, 2010.
    [6] Dahl D A. SIMION 3D 8.1[EB/OL]. http://www.simion.com.
    [7] Miklos G, Vladimir Z. Particle trajectory tracing in ANSYS[J]. Nuclear Instruments and Methods in Physics Research Section A, 1999, 427(1/2): 408-411. doi: 10.1016/S0168-9002(98)01528-9
    [8] Zhao Bo, Zhu Tieming, Wang Fengfeng, et al. 3D thermal-fluid coupled analysis for 81.25 MHz RFQ accelerator[J]. Nuclear Instruments and Methods in Physics Research Section A, 2019, 493(1): 172-180.
    [9] Hong S G, Kim J H, Kim M J, et al. Design and test of a graphite target system for in-flight fragment separator[J]. Nuclear Instruments and Methods in Physics Research Section A, 2014, 752: 1-5. doi: 10.1016/j.nima.2014.03.037
    [10] Madenci E, Guven I. The finite element method and application in engineering using ANSYS[M]. Berlin: Springer, 2015.
    [11] 张耀锋, 尹远, 张春雷, 等. Quadratic Shepard插值法在TPC探测器电场计算中的应用[J]. 原子能科学与技术, 2019, 53(12):2454-2459. (Zhang Yaofeng, Yin Yuan, Zhang Chunlei, et al. Application of quadratic shepard interpolation method to electric field calculation of TPC detector[J]. Atomic Energy Science and Technology, 2019, 53(12): 2454-2459
    [12] Itano W M, Wineland D J. Laser cooling of ions stored in harmonic and Penning traps[J]. Physical Review A, 1982, 25(1): 35-54. doi: 10.1103/PhysRevA.25.35
    [13] Lunney M. D, Moore R B Cooling of mass-separated beams using a radiofrequency quadrupole ion guide[J]. International Journal of Mass Spectrometry, 1999, 190/191: 153-160. doi: 10.1016/S1387-3806(99)00009-3
    [14] Brown L S, Gabrielse G. Geonium theory: Physics of a single electron or ion in a Penning trap[J]. Reviews of Modern Physics, 1986, 58(1): 233-311. doi: 10.1103/RevModPhys.58.233
    [15] Dehmelt H G. Radiofrequency spectroscopy of stored ions II: Spectroscopy[J]. Adv. At. Mol. Phys, 1969, 5: 109-154.
    [16] Konig M, Bollen G, Kluge H J, et al. Quadrupole excitation of stored ion motion at the true cyclotron frequency[J]. International Journal of Mass Spectrometry and Ion Processes, 1995, 142: 95-116. doi: 10.1016/0168-1176(95)04146-C
    [17] Bruzewicz C D, Chiaverini J, McConnell B, et al. Trapped-ion quantum computing: Progress and challenges[J]. Appl Phys Rev, 2019, 6: 021314. doi: 10.1063/1.5088164
    [18] Bohnet J G, Sawyer B C, Britton J W, et al. Quantum spin dynamics and entanglement generation with hundreds of trapped ions[J]. Science, 2016, 352(6291): 1297-1301. doi: 10.1126/science.aad9958
  • 加载中
图(11)
计量
  • 文章访问数:  712
  • HTML全文浏览量:  236
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-07
  • 修回日期:  2021-06-29
  • 网络出版日期:  2021-07-22
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回