留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

L波段相对论磁控管长时间稳定运行实验研究

秦奋 张勇 鞠炳全 陆巍 徐莎 吴朝阳 丁恩燕 雷禄容 张新凯 方翔鹤 杨周炳 王冬

秦奋, 张勇, 鞠炳全, 等. L波段相对论磁控管长时间稳定运行实验研究[J]. 强激光与粒子束, 2021, 33: 073002. doi: 10.11884/HPLPB202133.210137
引用本文: 秦奋, 张勇, 鞠炳全, 等. L波段相对论磁控管长时间稳定运行实验研究[J]. 强激光与粒子束, 2021, 33: 073002. doi: 10.11884/HPLPB202133.210137
Qin Fen, Zhang Yong, Ju Bingquan, et al. Experimental investigation of L-band relativistic magnetron at long-term steady operation[J]. High Power Laser and Particle Beams, 2021, 33: 073002. doi: 10.11884/HPLPB202133.210137
Citation: Qin Fen, Zhang Yong, Ju Bingquan, et al. Experimental investigation of L-band relativistic magnetron at long-term steady operation[J]. High Power Laser and Particle Beams, 2021, 33: 073002. doi: 10.11884/HPLPB202133.210137

L波段相对论磁控管长时间稳定运行实验研究

doi: 10.11884/HPLPB202133.210137
基金项目: 国家自然科学基金项目(61701460)
详细信息
    作者简介:

    秦 奋(1986—),男,博士,副研究员,主要从事高功率微波器件及辐射技术研究

    通讯作者:

    王 冬(1981—),男,博士,研究员,主要从事高功率微波器件及辐射技术研究

  • 中图分类号: TN125

Experimental investigation of L-band relativistic magnetron at long-term steady operation

  • 摘要: 以实现GW级高功率微波源长时间稳定运行为目标,利用应用电子学研究所小型化Marx型脉冲功率源平台开展了L波段六腔衍射输出相对论磁控管长时间稳定运行实验研究。首先介绍了L波段六腔衍射输出相对论磁控管基本结构及长时间稳定运行实验装置基本情况,接着给出了测试系统布局及各参数测试方法,最后给出了实验研究结果:所研制的L波段衍射输出相对论磁控管在输出功率大于1 GW、重复频率10 Hz的条件下实现了超过55 min的长时间稳定运行,输出微波模式稳定,无竞争模式出现,中心频率为1.57 GHz。
  • 图  1  L波段衍射输出相对论磁控管结构示意图

    Figure  1.  Schematic of L-band relativistic magnetron with diffraction output

    Note:1-cathode, 2-anode, 3-diffraction output structure

    图  2  相对论磁控管长时间运行实验系统

    Figure  2.  Experimental setup of RM for long time radiation

    图  3  实验系统测试布局

    Figure  3.  Measurement setup for experimental investigation

    图  4  测试线路连接框图

    Figure  4.  Schematic of a measure line

    图  5  实验测得电压、电流、辐射微波波形及对应频谱

    Figure  5.  Detected waveform of voltage, current, microwave and corresponding spectrum in experiment

    图  6  电压(黄)、电流(红)、辐射微波(蓝)波形

    Figure  6.  Detected waveform of voltage (yellow), current (red) and microwave (blue) in experiment

  • [1] Benford J. History and future of the relativistic magnetron[C]//2010 International Conference on the Origins and Evolution of the Cavity Magnetron. Bournemouth, UK: IEEE, 2010: 40-45.
    [2] Andreev D, Kuskov A, Schamiloglu E. Review of the relativistic magnetron[J]. Matter and Radiation at Extremes, 2019, 4: 067201. doi: 10.1063/1.5100028
    [3] Fuks M, Schamiloglu E. Rapid start of oscillations in a magnetron with a “transparent” cathode[J]. Physical Review Letters, 2005, 95: 205101. doi: 10.1103/PhysRevLett.95.205101
    [4] Bosman H L, Fuks M I, Prasad S, et al. Improvement of the output characteristics of magnetrons using the transparent cathode[J]. IEEE Transactions on Plasma Science, 2006, 34(3): 606-619. doi: 10.1109/TPS.2006.875771
    [5] Fuks M I, Kovalev N F, Andreev A D, et al. Mode conversion in a magnetron with axial extraction of radiation[J]. IEEE Transactions on Plasma Science, 2006, 34(3): 620-626. doi: 10.1109/TPS.2006.875770
    [6] Daimon M, Jiang W. Modified configuration of relativistic magnetron with diffraction output for efficiency improvement[J]. Applied Physics Letters, 2007, 91: 191503. doi: 10.1063/1.2803757
    [7] Fuks M I, Schamiloglu E. 70% efficient relativistic magnetron with axial extraction of radiation through a horn antenna[J]. IEEE Transactions on Plasma Science, 2010, 38(6): 1302-1312. doi: 10.1109/TPS.2010.2042823
    [8] Hoff B W, Greenwood A D, Mardahl P J, et al. All cavity-magnetron axial extraction technique[J]. IEEE Transactions on Plasma Science, 2012, 40(11): 3046-3051. doi: 10.1109/TPS.2012.2217758
    [9] Liu Meiqin, Fuks M I, Schamiloglu E, et al. Operation characteristics of A6 relativistic magnetron using single-stepped cavities with axial extraction[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 3344-3348. doi: 10.1109/TPS.2014.2352353
    [10] Li Tianming, Li Jiayin, Hu Biao. Studies of the frequency-agile relativistic magnetron[J]. IEEE Transactions on Plasma Science, 2012: 1344-1349.
    [11] Li Wei, Liu Yonggui. An efficient mode conversion configuration in relativistic magnetron with axial diffraction output[J]. Journal of Applied Physics, 2009, 106: 053303. doi: 10.1063/1.3211323
    [12] Shi Difu, Qian Baoliang, Wang Honggang, et al. A modified relativistic magnetron with TEM output mode[J]. Physics of Plasmas, 2017, 24: 013118. doi: 10.1063/1.4975006
    [13] Xu Sha, Lei Lurong, Qin Fen, et al. Compact, high power and high efficiency relativistic magnetron with L-band all cavity axial extraction[J]. Physics of Plasmas, 2018, 25: 083301. doi: 10.1063/1.5041860
    [14] Qin Fen, Xu Sha, Lei Lurong, et al. A compact relativistic magnetron with lower output mode[J]. IEEE Transactions on Electron Devices, 2019, 66(4): 1960-1964. doi: 10.1109/TED.2019.2898446
    [15] Qin Fen, Zhang Yong, Xu Sha, et al. A frequency-agile relativistic magnetron with axial tuning[J]. IEEE Electron Device Letters, 2020, 41(5): 781-783. doi: 10.1109/LED.2020.2984096
    [16] Lei Lurong, Qin Fen, Xu Sha, et al. Preliminary experimental investigation of a compact high-efficiency relativistic magnetron with low guiding magnetic field[J]. IEEE Transactions on Plasma Science, 2019, 47(1): 209-213. doi: 10.1109/TPS.2018.2879820
  • 加载中
图(6)
计量
  • 文章访问数:  1456
  • HTML全文浏览量:  484
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-08
  • 修回日期:  2021-05-25
  • 网络出版日期:  2021-06-23
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回