留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抛光区域几何特征与流场创成关键参数关系

杨航 余玉民 张云飞 黄文 何建国

杨航, 余玉民, 张云飞, 等. 抛光区域几何特征与流场创成关键参数关系[J]. 强激光与粒子束, 2021, 33: 101003. doi: 10.11884/HPLPB202133.210151
引用本文: 杨航, 余玉民, 张云飞, 等. 抛光区域几何特征与流场创成关键参数关系[J]. 强激光与粒子束, 2021, 33: 101003. doi: 10.11884/HPLPB202133.210151
Yang Hang, Yu Yumin, Zhang Yunfei, et al. Relationship between the geometric characteristics of the polished area and the key parameters of the flow field creation[J]. High Power Laser and Particle Beams, 2021, 33: 101003. doi: 10.11884/HPLPB202133.210151
Citation: Yang Hang, Yu Yumin, Zhang Yunfei, et al. Relationship between the geometric characteristics of the polished area and the key parameters of the flow field creation[J]. High Power Laser and Particle Beams, 2021, 33: 101003. doi: 10.11884/HPLPB202133.210151

抛光区域几何特征与流场创成关键参数关系

doi: 10.11884/HPLPB202133.210151
基金项目: 国家“高档数控机床与基础制造装备”科技重大专项“巨型激光装置光学元件超精密制造系统示范工程”课题资助项目(2017ZX04022001);贵州省基础研究计划项目(黔科合基础-ZK[2021]一般272);遵义市科技局科技研发项目(遵市科合HZ字[2020]21号)
详细信息
    作者简介:

    杨 航,yhangde@qq.com

  • 中图分类号: TH164

Relationship between the geometric characteristics of the polished area and the key parameters of the flow field creation

  • 摘要: 磁流变抛光在其实际工作过程中,抛光区域几何特征的不同将会对流场创成的关键参数产生很大的影响。针对此问题建立三维模型与实验仿真展开研究。在研究抛光区域几何特征与流场创成关键参数的关系时,先改变抛光区域形状,观察其对流场创成中剪切应力、压力产生的影响;再控制抛光区域的形状相同时,通过改变抛光区域尺寸大小,观察对流场创成中剪切应力、压力产生的影响。结果表明:当抛光区域形状不同时,抛光区域为凹面时剪切应力最大,抛光区域为凸面时剪切应力最小。当抛光区域形状为凸面时,抛光区域两边的剪切应力随着抛光区域曲率大小增大而增大;当抛光区域形状为凹面,抛光区域两边的剪切应力随着抛光区域曲率大小增大而减小。当抛光区域形状不同时,抛光区域为凹面时压力最大,抛光区域为凸面时压力最小。当抛光区域形状为凸面时,抛光区域处的压力随着抛光区域曲率增大而增大;当抛光区域形状为凹面时,抛光区域处的压力随着抛光区域曲率增大而减小。
  • 图  1  磁流变抛光示意图

    Figure  1.  Schematic diagram of magnetorheological polishing

    图  2  抛光区域为凹面,凸面、平面时的剪切应力云图

    Figure  2.  Shear stress cloud diagram when the polished area is concave, convex and flat

    图  3  抛光区域x轴上剪切应力分布曲线图

    Figure  3.  Shear stress distribution curve on the x-axis of the polished area

    图  4  抛光区域为凸面时曲率大小为80 mm至440 mm的剪切应力云图

    Figure  4.  Shear stress cloud diagram with curvature of 80 mm to 440 mm when the polished area is convex

    图  5  凸面抛光区域x轴上剪切应力分布曲线图

    Figure  5.  Shear stress distribution curve on the x-axis of the convex polished area

    图  6  抛光区域为凹面时曲率大小为180 mm至450 mm的剪切应力云图

    Figure  6.  Shear stress cloud diagram with a curvature of 180 mm to 450 mm when the polished area is concave

    图  7  凹面抛光区域x轴上剪切应力分布曲线图

    Figure  7.  Shear stress distribution curve on the x-axis of the concave polished area

    图  8  抛光区域为凹面、凸面、平面的压力云图

    Figure  8.  Pressure cloud diagram of the concave, convex, and flat polished area

    图  9  抛光区域x轴上压力分布曲线图

    Figure  9.  Pressure distribution curve on the x-axis of the polished area

    图  10  抛光区域为凸面时曲率大小80 mm至440 mm的压力云图

    Figure  10.  Pressure cloud diagram with a curvature of 80 mm to 440 mm when the polished area is convex

    图  11  凸面抛光区域x轴上压力分布曲线图

    Figure  11.  Pressure distribution curve on the x-axis of the convex polished area

    图  12  抛光区域为凹面时曲率大小180 mm至450 mm压力云图

    Figure  12.  Pressure cloud diagram with curvature of 180 mm to 450 mm when the polished area is concave

    图  13  凹面抛光区域x轴上压力分布曲线图

    Figure  13.  Pressure distribution curve on the x-axis of the concave polished area

    表  1  选用的磁流变抛光工艺参数

    Table  1.   Selected magnetorheological polishing process parameters

    consistency index,
    k/(sn−2/m)
    power law
    index
    yield stress
    threshold p
    temporary shear
    rate/(1/s)
    flow coefficient
    n
    ribbon
    thickness/mm
    ribbon
    width/mm
    polishing wheel
    speed v/(m/s)
    inlet and outlet
    pressure/Pa
    59.010.730113861.841000.37551.5154.71101000
    下载: 导出CSV

    表  2  不同形状抛光区域

    Table  2.   Polished areas of different shapes

    No.immersion depth h/mmshape
    11.0concave
    21.0convex
    31.0plane
    下载: 导出CSV

    表  3  选取的抛光区域曲率大小参数

    Table  3.   Curvature parameters of the selected polishing area

    No.immersion
    depth h/mm
    convex
    curvature r/mm
    concave
    curvature r/mm
    11.080180
    21.0120210
    31.0160240
    41.0200270
    51.0240300
    61.0280330
    71.0320360
    81.0360390
    91.0400420
    101.0440450
    下载: 导出CSV

    表  4  不同形状抛光区域

    Table  4.   Polished areas of different shapes

    No.immersion depth h/mmshape
    11.0concave
    21.0convex
    31.0plane
    下载: 导出CSV

    表  5  选取的抛光区域曲率大小参数

    Table  5.   Curvature parameters of the selected polishing area

    No.immersion
    depth h/mm
    convex
    curvature r/mm
    concave
    curvature r/mm
    11.080180
    21.0120210
    31.0160240
    41.0200270
    51.0240300
    61.0280330
    71.0320360
    81.0360390
    91.0400420
    101.0440450
    下载: 导出CSV
  • [1] Awwal A, Bowers M, Wisoff J, et al. Status of NIF laser and high power laser research at LLNL[C]//SPIE Lase. 2017: 1008403.
    [2] 高伟, 魏齐龙, 李晓媛, 等. 磁流变抛光与磁流变液: 原理与研究现状[J]. 磁性材料及器件, 2015, 46(2):68-73. (Gao Wei, Wei Qilong, Li Xiaoyuan, et al. Magnetorheological polishing and magnetorheological fluids: principles and research status[J]. Magnetic Materials and Devices, 2015, 46(2): 68-73 doi: 10.3969/j.issn.1001-3830.2015.02.016
    [3] Yin Yuehong, Zhang Yifan, Dai Yifan, et al. Novel magneto-rheological finishing process of KDP crystal by controlling fluid-crystal temperature difference to restrain deliquescence[J]. CIRP Annals, 2018, 67(1): 587-590. doi: 10.1016/j.cirp.2018.04.058
    [4] Jain V K, Ranjan P, Suri V K, et al. Chemo-mechanical magneto-rheological finishing (CMMRF) of silicon for microelectronics applications[J]. CIRP Annals, 2010, 59(1): 323-328. doi: 10.1016/j.cirp.2010.03.106
    [5] Khan D A, Alam Z, Jha S. Nanofinishing of copper using ball end magnetorheological finishing (BEMRF) process[C]//ASME International Mechanical Engineering Congress and Exposition. 2016.
    [6] 张峰, 余景池, 张学军, 等. 磁流变抛光技术[J]. 光学精密工程, 1999, 7(5):1-8. (Zhang Feng, Yu Jingchi, Zhang Xuejun, et al. Magnetorheological polishing technology[J]. Optics and Precision Engineering, 1999, 7(5): 1-8 doi: 10.3321/j.issn:1004-924X.1999.05.001
    [7] 杨建国, 李中会, 李蓓智, 等. 精密磁流变抛光装置的设计与应用[J]. 机械设计与制造, 2010, 2010(9):60-62. (Yang Jianguo, Li Zhonghui, Li Beizhi, et al. Design and application of precision magnetorheological polishing device[J]. Machine Design and Manufacturing, 2010, 2010(9): 60-62 doi: 10.3969/j.issn.1001-3997.2010.09.026
    [8] 成连民, 李蓓智, 杨建国, 等. 磁流变抛光工艺参数的研究[J]. 机械, 2009, 36(6):11-16. (Cheng Lianmin, Li Beizhi, Yang Jianguo, et al. Research on the process parameters of magnetorheological polishing[J]. Machinery, 2009, 36(6): 11-16
    [9] 甄宗坤, 蔡东健. 基于面状几何基元的特征自动提取技术[J]. 水利与建筑工程学报, 2018, 16(2):147-151. (Zhen Zongkun, Cai Dongjian. Automatic feature extraction technology based on planar geometric primitives[J]. Journal of Water Resources and Architectural Engineering, 2018, 16(2): 147-151 doi: 10.3969/j.issn.1672-1144.2018.02.028
    [10] 张云, 冯之敬, 赵广木. 磁流变抛光工具及其去除函数[J]. 清华大学学报(自然科学版), 2004, 2004(2):190-193. (Zhang Yun, Feng Zhijing, Zhao Guangmu. Magnetorheological polishing tool and its removal function[J]. Journal of Tsinghua University (Natural Science Edition), 2004, 2004(2): 190-193 doi: 10.3321/j.issn:1000-0054.2004.02.015
    [11] 石峰, 戴一帆, 彭小强, 等. 磁流变抛光过程的材料去除三维模型[J]. 中国机械工程, 2009, 20(6):644-648. (Shi Feng, Dai Yifan, Peng Xiaoqiang, et al. Three-dimensional model of material removal in magnetorheological polishing process[J]. China Mechanical Engineering, 2009, 20(6): 644-648 doi: 10.3321/j.issn:1004-132X.2009.06.004
    [12] Liu Jiabao, Li Xiaoyuan, Zhang Yunfei, et al. Predicting the material removal rate (MRR) in surface magnetorheological finishing (MRF) based on the synergistic effect of pressure and shear stress[J]. Applied Surface Science, 2020, 504: 144492. doi: 10.1016/j.apsusc.2019.144492
    [13] Chen Mingjun, Liu Henan, Cheng Jian, et al. Model of the material removal function and an experimental study on a magnetorheological finishing process using a small ball-end permanent-magnet polishing head[J]. Applied Optics, 2017, 56(19): 5573-5582. doi: 10.1364/AO.56.005573
    [14] 李耀明, 沈兴全, 王爱玲. 磁流变抛光技术的工艺试验[J]. 金刚石与磨料磨具工程, 2009, 2009(5):64-66. (Li Yaoming, Shen Xingquan, Wang Ailing. Process test of magnetorheological polishing technology[J]. Diamond and Abrasive Engineering, 2009, 2009(5): 64-66 doi: 10.3969/j.issn.1006-852X.2009.05.013
    [15] 秦北志, 杨李茗, 朱日宏, 等. 光学元件精密加工中的磁流变抛光技术工艺参数[J]. 强激光与粒子束, 2013, 25(9):2281-2286. (Qin Beizhi, Yang Liming, Zhu Rihong, et al. Process parameters of magnetorheological polishing technology in precision machining of optical components[J]. High Power Laser and Particle Beam, 2013, 25(9): 2281-2286 doi: 10.3788/HPLPB20132509.2281
    [16] 李发胜, 张平. 抛光用磁流变液的研究[J]. 功能材料, 2006(8):1187-1190. (Li Fasheng, Zhang Ping. Research on magnetorheological fluid for polishing[J]. Functional Materials, 2006(8): 1187-1190 doi: 10.3321/j.issn:1001-9731.2006.08.001
    [17] 沙树静, 胡锦飞, 张和权. 磁流变抛光技术发展[J]. 机械工程师, 2018, 2018(7):5-8. (Sha Shujing, Hu Jinfei, Zhang Hequan. Development of magnetorheological polishing technology[J]. Mechanical Engineer, 2018, 2018(7): 5-8 doi: 10.3969/j.issn.1002-2333.2018.07.002
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  757
  • HTML全文浏览量:  322
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-16
  • 修回日期:  2021-08-25
  • 网络出版日期:  2021-09-14
  • 刊出日期:  2021-10-15

目录

    /

    返回文章
    返回