留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多色非相干光入射ICF黑腔受激布里渊散射分析

王强 刘占军 郑春阳 李欣 曹莉华 郝亮 蔡洪波

王强, 刘占军, 郑春阳, 等. 多色非相干光入射ICF黑腔受激布里渊散射分析[J]. 强激光与粒子束, 2021, 33: 102001. doi: 10.11884/HPLPB202133.210159
引用本文: 王强, 刘占军, 郑春阳, 等. 多色非相干光入射ICF黑腔受激布里渊散射分析[J]. 强激光与粒子束, 2021, 33: 102001. doi: 10.11884/HPLPB202133.210159
Wang Qiang, Liu Zhanjun, Zheng Chunyang, et al. Analysis of stimulated Brillouin scattering in ICF hohlraum excited by multi-color incoherent lights[J]. High Power Laser and Particle Beams, 2021, 33: 102001. doi: 10.11884/HPLPB202133.210159
Citation: Wang Qiang, Liu Zhanjun, Zheng Chunyang, et al. Analysis of stimulated Brillouin scattering in ICF hohlraum excited by multi-color incoherent lights[J]. High Power Laser and Particle Beams, 2021, 33: 102001. doi: 10.11884/HPLPB202133.210159

多色非相干光入射ICF黑腔受激布里渊散射分析

doi: 10.11884/HPLPB202133.210159
基金项目: 国家自然科学基金项目(11975059,11875091)
详细信息
    作者简介:

    王 强,wang_qiang@iapcm.ac.cn

  • 中图分类号: O53

Analysis of stimulated Brillouin scattering in ICF hohlraum excited by multi-color incoherent lights

  • 摘要: 为研究多色非相干激光入射ICF黑腔的受激布里渊散射(SBS)和受激拉曼散射(SRS)发展情况,建立了一维受激散射稳态谱分析模型,并发展了相应的数值模拟程序。分析了不同频率激光激发的受激散射光通过共用等离子体波耦合的物理图像以及影响背散光谱的物理因素。针对波长差0.3 nm的等强度双色光入射封底金腔的SBS进行了模拟分析,结果表明:采用双色光有效抑制了SBS;SBS光谱劈裂成间距为0.3 nm的两个峰;波长较长的入射光对应的SBS光获得了较大的增益;如果固定激光总强度和总带宽,则存在抑制SBS的最优光束数目。
  • 图  1  双色光SBS共用离子声波

    Figure  1.  SBS excited by two individual lightrays are coupled through sharing ion acoustic wave

    图  2  $ (351\pm 0.15)\mathrm{n}\mathrm{m} $等强度双色光分别和同时入射$ {\text{C}}_{\text{5}}{\text{H}}_{\text{12}} $时的耦合系数谱

    Figure  2.  The spectra of coupling coefficient when equal intensity two-color light of wavelength $ (351\pm 0.15)\mathrm{n}\mathrm{m} $ incident $ {\text{C}}_{\text{5}}{\text{H}}_{\text{12}} $ plasma respectively and simultaneously

    图  3  $ (351\pm 0.15)\mathrm{n}\mathrm{m} $等强度双色光分别和同时入射高密度$ {\text{C}}_{\text{5}}{\text{H}}_{\text{12}} $和低密度$ \mathrm{H}\mathrm{e} $的耦合系数谱

    Figure  3.  The spectra of coupling coefficient when equal intensity two-color light of wavelength $ (351\pm 0.15)\mathrm{n}\mathrm{m} $ incident high density $ {\text{C}}_{\text{5}}{\text{H}}_{\text{12}} $ and low density He plasma respectively and simultaneously

    图  4  单色光入射(a)和双色光入射(b)的SBS和SRS背散光强度演化

    Figure  4.  The intensity evolution of SBS and SRS backscattered by monochromatic light and bichromatic light

    图  5  单色光入射和双色光入射的SBS背散光谱随时间演化

    Figure  5.  Time evolution of SBS back scattering spectra of monochromatic light and bichromatic light

    图  6  $ {t}=1.5\;\mathrm{n}\mathrm{s} $,单色光入射(a)和双色光入射(b)腔轴光线上的SBS背散光谱随空间演化

    Figure  6.  t =1.5 ns, the spatial evolution of the SBS backscattering spectra of monochromatic light (a) and bichromatic light (b) on the cylindrical axis

    图  7  $ {t}=2.5\;\mathrm{n}\mathrm{s} $,单色光入射(a)和双色光入射(b)腔轴光线上的SBS背散光谱随空间演化

    Figure  7.  t =2.5 ns, the spatial evolution of the SBS backscattering spectra of monochromatic light (a) and bichromatic light (b) on the cylindrical axis

    图  8  $ {t}=1.5\;\mathrm{n}\mathrm{s} $,腔轴光线路径上的等离子体参数分布。编号(1)…(10)的竖虚线为图6中的测量位置示意。激光从右侧入射

    Figure  8.  t =1.5 ns, plasma parameters along the ray at cylindrical axis. The vertical dashed lines numbered (1)…(10) indicate the measuring positions in Fig. 6

    图  9  $ {t}=2.5\;\mathrm{n}\mathrm{s} $,腔轴光线路径上的等离子体参数分布。编号(1)…(10)的竖虚线为图7中的测量位置示意

    Figure  9.  t=2.5 ns, plasma parameters along the ray at cylindrical axis. The vertical dashed lines numbered (1)…(10) indicate the measuring positions in Fig. 7

    图  10  $ {t}=1.5\;\mathrm{n}\mathrm{s} $,腔轴光线,双色光入射,(a)为入射光和SBS散射光的耦合系数谱随空间变化,红线为流速分布示意;(b)为入射光、SBS散射光和耦合系数的乘积随空间变化,红线为平均电离度$ {{Z}}_{\mathrm{a}\mathrm{v}\mathrm{g}} $分布示意图

    Figure  10.  t =1.5 ns, the ray at cylindrical axis, monochromatic light: (a) shows the coupling coefficient between incident light and SBS scattering light, and the red line denotes flow velocity along the ray; (b) shows the convective growth rate of SBS scattering light, and the red line denotes the mean ionization degree $ {{Z}}_{\mathrm{a}\mathrm{v}\mathrm{g}} $

    图  11  $ {t}=2.5\;\mathrm{n}\mathrm{s} $,腔轴光线,双色光入射,(a)为入射光和SBS散射光的耦合系数谱随空间变化,红线为流速分布示意;(b)为入射光、SBS散射光和耦合系数的乘积随空间变化,红线为平均电离度$ {{Z}}_{\mathrm{a}\mathrm{v}\mathrm{g}} $分布示意图

    Figure  11.  t =2.5 ns, the ray at cylindrical axis, monochromatic light: (a) shows the coupling coefficient between incident light and SBS scattering light, and the red line denotes flow velocity along the ray; (b) shows the convective growth rate of SBS scattering light, and the red line denotes the mean ionization degree $ {{Z}}_{\mathrm{a}\mathrm{v}\mathrm{g}} $

    图  12  $ {t}=\mathrm{1.5,2.5}\;\mathrm{n}\mathrm{s} $,双色的入射光强度和SBS散射光强度随空间变化

    Figure  12.  t =1.5, 2.5 ns, the spatial evolution of intensities of monochromatic incident light and SBS scattering light

    图  13  (a)M色光入射情况下的SBS光谱,(b)SBS背散份额随M的变化

    Figure  13.  (a) Spectra of SBS light under incident light of M colors, (b) SBS reflectivities as a function of M

  • [1] Atzeni S, Meyer-ter-Vehn J. The physics of inertial fusion[M]. New York: Oxford University, 2004.
    [2] Lindl J, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Phys Plasmas, 2004, 11: 339-491. doi: 10.1063/1.1578638
    [3] Town R P J, Rosen M D, Michel P A, et al. Analysis of the National Ignition Facility ignition hohlraum energetics experiments[J]. Phys Plasmas, 2011, 18: 056302. doi: 10.1063/1.3562552
    [4] Kline J L, Callahan D A, Glenzer S H, et al. Hohlraum energetics scaling to 520 TW on the National Ignition Facility[J]. Phys Plasmas, 2013, 20: 056314. doi: 10.1063/1.4803907
    [5] Moody J D, Strozzi D J, Divol L, et al. Raman backscatter as a remote laser power sensor in high-energy-density plasmas[J]. Phys Rev Lett, 2013, 111: 025001. doi: 10.1103/PhysRevLett.111.025001
    [6] Rosen M D, Scott H A, Hinkel D E, et. al. The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums[J]. High Energy Density Phys, 2011, 7: 180-190. doi: 10.1016/j.hedp.2011.03.008
    [7] Thomson J J, Karush J I. Effects of finite-bandwidth driver on the parametric instability[J]. Phys Fluids, 1974, 17(8): 1608-1613. doi: 10.1063/1.1694940
    [8] Thomson J J. Finite-bandwidth effects on the parametric instability in an inhomogeneous plasma[J]. Nucl Fusion, 1975, 15: 237-247. doi: 10.1088/0029-5515/15/2/008
    [9] Obenschain S P, Luhmann N C, Jr Greiling P T. Effects of finite bandwidth driver pumps on the parametric-decay instability[J]. Phys Rev Lett, 1976, 36: 1309-1312. doi: 10.1103/PhysRevLett.36.1309
    [10] Harper-Slaboszewicz V J, Mizuno K, Idehara T, et al. Finite bandwidth drive effect on the parametric decay instability near the lower hybrid frequency[J]. Phys Fluids B, 1990, 2: 2525-2527. doi: 10.1063/1.859374
    [11] Guzdar P N, Liu C S, Lehmberg R H. The effect of bandwidth on the convective Raman instability in inhomogeneous plasmas[J]. Phys Fluids B, 1991, 3: 2882-2888. doi: 10.1063/1.859921
    [12] Dodd E S, Umstadter D. Coherent control of stimulated Raman scattering using chirped laser pulses[J]. Phys Plasmas, 2001, 8(8): 3531-3534. doi: 10.1063/1.1382820
    [13] 杨冬. 啁啾激光抑制等离子体参量不稳定性的研究[D]. 绵阳: 中国工程物理研究院, 2009.

    Yang Dong. The study of suppressing laser-plasma parametric in stablities using chirped laser[D].Mianyang: China Academy of Engineering Physics, 2009.
    [14] Moody J D, Baldis H A, Montgomery D S, et al. Beam smoothing effects on the stimulated Brillouin scattering (SBS) instability in Nova exploding foil plasmas[J]. Phys Plasmas, 1995, 2(11): 4285-4296. doi: 10.1063/1.871053
    [15] Montgomery D S, Moody J D, Baldis H A, et al. Effects of laser beam smoothing on stimulated Raman scattering in exploding foil plasmas[J]. Phys Plasmas, 1996, 3: 1728-1736. doi: 10.1063/1.871682
    [16] Zhao Y, Yu L L, Zheng J, et al. Effects of large laser bandwidth on stimulated Raman scattering instability in underdense plasma[J]. Phys Plasmas, 2015, 22: 052119. doi: 10.1063/1.4921659
    [17] Follett R K, Shaw J G, Myatt J F, et al. Thresholds of absolute two-plasmon-decay and stimulated Raman scattering instabilities driven by multiple broadband lasers[J]. Phys Plasmas, 2021, 28: 032103. doi: 10.1063/5.0037869
    [18] Zhao Y, Weng S M, Chen M, et al. Effective suppression of parametric instabilities with decoupled broadband lasers in plasma[J]. Phys Plasmas, 2017, 24: 112102. doi: 10.1063/1.5003420
    [19] Liu Z J, Chen Y H, Zheng C Y, et al. Controlling stimulated Raman scattering by two-color light in inertial confinement fusion[J]. Phys Plasmas, 2017, 24: 082704. doi: 10.1063/1.4995474
    [20] Strozzi D J, Williams E A, Hinkel D E, et al. Ray-based calculations of backscatter in laser fusion targets[J]. Phys Plasmas, 2008, 15: 102703. doi: 10.1063/1.2992522
    [21] Hao Liang, Liu Zhanjun, Hu Xiaoyan, et al. Analysis of backscattered light spectra of SRS and SBS in hohlraum plasma[J]. High Power Laser and Particle Beams, 2015, 27: 032004. doi: 10.3788/HPLPB20152703.32004
    [22] Song Peng, Zhai Chuanlei, Li Shuanggui, et al. LARED-Integration code for numerical simulation of the whole process of the indirect-drive laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2015, 27: 032007. doi: 10.3788/HPLPB20152703.32007
    [23] Serduke F J D, Minguez E, Davidson S J, et al. WorkOp-IV summary: lessons from iron opacities[J]. J. Quant Spectrosc Radiat Transfer, 2000, 65: 527-541. doi: 10.1016/S0022-4073(99)00094-1
  • 加载中
图(13)
计量
  • 文章访问数:  991
  • HTML全文浏览量:  392
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-25
  • 修回日期:  2021-06-08
  • 网络出版日期:  2021-10-08
  • 刊出日期:  2021-10-15

目录

    /

    返回文章
    返回