留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大口径反射镜低应力夹持技术

郑胜亨 马文静 杨英 曹庭分 陈晓娟 郭雨源 廖予祯 张鑫 韩伟 邓学伟 胡东霞

郑胜亨, 马文静, 杨英, 等. 大口径反射镜低应力夹持技术[J]. 强激光与粒子束, 2021, 33: 091002. doi: 10.11884/HPLPB202133.210176
引用本文: 郑胜亨, 马文静, 杨英, 等. 大口径反射镜低应力夹持技术[J]. 强激光与粒子束, 2021, 33: 091002. doi: 10.11884/HPLPB202133.210176
Zheng Shengheng, Ma Wenjing, Yang Ying, et al. Low-stress mounting technology of large aperture mirror[J]. High Power Laser and Particle Beams, 2021, 33: 091002. doi: 10.11884/HPLPB202133.210176
Citation: Zheng Shengheng, Ma Wenjing, Yang Ying, et al. Low-stress mounting technology of large aperture mirror[J]. High Power Laser and Particle Beams, 2021, 33: 091002. doi: 10.11884/HPLPB202133.210176

大口径反射镜低应力夹持技术

doi: 10.11884/HPLPB202133.210176
详细信息
    作者简介:

    郑胜亨,zhenshenhen@126.com

    通讯作者:

    杨 英,whbms4353@163.com

  • 中图分类号: TH242

Low-stress mounting technology of large aperture mirror

  • 摘要: 高功率固体激光装置对大口径反射镜附加波前畸变和姿态稳定提出了苛刻的要求,在确保姿态稳定性的同时,要求低应力夹持使附加波前畸变峰谷值(PV值)<λ/3, 波长λ=633 nm。提出了一种正面三点支撑结合侧面八点限位的大口径反射镜夹持技术,对该夹持结构下引起的附加波前畸变进行了仿真和实验研究,并对反射镜姿态稳定性进行了不同工况下的实验模拟。结果表明,该夹持方式引入的附加波前畸变PV值约为23.6 nm,振动、晃动、翻转不同工况下反射镜指向变化PV值小于50 μrad,附加波前畸变和姿态稳定性均满足高功率激光装置的要求。
  • 图  1  大口径反射镜夹持结构

    Figure  1.  Mounting structure of large-aperture mirror

    图  2  有限元模拟的边界条件

    Figure  2.  Boundary condition of finite element simulation

    图  3  反射镜面形仿真结果

    Figure  3.  Simulation results of mirror surface

    图  4  装配后的试验对象

    Figure  4.  Test object after assembly

    图  5  红外干涉仪检测平台

    Figure  5.  Infrared interferometer testing platform

    图  6  夹持姿态稳定性试验光路

    Figure  6.  Optical path of mounting attitude stability

    图  7  反射镜面形测试结果

    Figure  7.  Test result of mirror surface

    图  8  反射镜姿态稳定性试验结果

    Figure  8.  Test result of mirror attitude stability

  • [1] Bowers M, Wisoff J, Herrmann M, et al. Status of NIF laser and high power laser research at LLNL[C]//Proceedings of SPIE. 2017: 1008403.
    [2] 张小民, 魏晓峰. 中国新一代巨型高峰值功率激光装置发展回顾[J]. 中国激光, 2019, 46:0100003. (Zhang Xiaomin, Wei Xiaofeng. Review of new generation of huge-scale high peak power laser facility in China[J]. Chinese Journal of Lasers, 2019, 46: 0100003 doi: 10.3788/CJL201946.0100003
    [3] 朱健强, 陈绍和, 郑玉霞, 等. 神光Ⅱ激光装置研制[J]. 中国激光, 2019, 46:0100002. (Zhu Jianqiang, Chen Shaohe, Zheng Yuxia, et al. Review on development of Shenguang-Ⅱ laser facility[J]. Chinese Journal of Lasers, 2019, 46: 0100002 doi: 10.3788/CJL201946.0100002
    [4] 张军伟, 吴文龙, 傅学军, 等. 大口径反射镜低附加波前控制技术[J]. 强激光与粒子束, 2013, 25(12):3193-3196. (Zhang Junwei, Wu Wenlong, Fu Xuejun, et al. Low addition wavefront control technology of large aperture mirror[J]. High Power Laser and Particle Beams, 2013, 25(12): 3193-3196 doi: 10.3788/HPLPB20132512.3193
    [5] 陈晓娟, 王美聪, 吴文凯, 等. 大口径反射镜波前畸变控制技术[J]. 强激光与粒子束, 2011, 23(12):3325-3328. (Chen Xiaojuan, Wang Meicong, Wu Wenkai, et al. Wavefront distortion control for large aperture mirror[J]. High Power Laser and Particle Beams, 2011, 23(12): 3325-3328 doi: 10.3788/HPLPB20112312.3325
    [6] 沈展鹏, 陈晓娟, 陈学前, 等. 大口径反射镜结构的两种参数优化方法[J]. 强激光与粒子束, 2018, 30:062001. (Shen Zhanpeng, Chen Xiaojuan, Chen Xueqian, et al. Two parameter optimization methods for large aperture mirror[J]. High Power Laser and Particle Beams, 2018, 30: 062001 doi: 10.11884/HPLPB201830.180011
    [7] Atherton L J. Optics for the National Ignition Facility[J]. Australian & New Zealand Journal of Public Health, 1999, 21(6): 614-620.
    [8] Hawleyfedder R A, Stolz C J, Menapace J A. NIF optical materials and fabrication technologies: an overview[J]. Proceedings of SPIE, 2004, 5341: 102-105.
    [9] 于霁晨, 袁健, 丛杉珊, 等. 背部支撑型空间反射镜镶嵌件粘接结构设计[J]. 光学学报, 2019, 39:0523002. (Yu Jichen, Yuan Jian, Cong Shanshan, et al. Design of adhesive structure for back-supported space reflector inserts[J]. Acta Optica Sinica, 2019, 39: 0523002 doi: 10.3788/AOS201939.0523002
    [10] Baisden P A, Atherton L J, Hawley R A, et al. Large optics for the National Ignition Facility[J]. Fusion Science and Technology, 2016, 69(1): 295-351. doi: 10.13182/FST15-143
    [11] Noailles S, Hatheway A E, Bart T, et al. Mechanical support system of laser megajoule large-dimension optical components[J]. Proceedings of SPIE, 2007: 66650Z.
    [12] 李桂华, 王辉, 熊召. 大口径传输反射镜在装配紧固力下的面形误差分析[J]. 中国机械工程, 2015, 26(9):1173-1178. (Li Guihua, Wang Hui, Xiong Zhao, et al. Surface error analysis of large reflecting mirror under assembly fastening forces[J]. China Mechanical Engineering, 2015, 26(9): 1173-1178 doi: 10.3969/j.issn.1004-132X.2015.09.008
    [13] 王辉, 黎沁, 熊召, 等. 高功率固体激光器的大口径反射镜装配误差分析[J]. 光学学报, 2015, 35:0922004. (Wang Hui, Li Qin, Xiong Zhao, et al. Assembly error analysis for large aperture transport mirror in high power solid-state laser system[J]. Acta Optica Sinica, 2015, 35: 0922004
    [14] 张政, 全旭松, 王辉, 等. 大口径激光传输反射镜低应力夹持工艺设计[J]. 光学学报, 2017, 37:0114002. (Zhang Zhen, Quan Xusong, Wang Hui, et al. Low-stress mounting configuration design for large aperture laser transmission mirror[J]. Acta Optica Sinica, 2017, 37: 0114002 doi: 10.3788/AOS201737.0114002
    [15] Su R, Liu H, Liang Y, et al. Analysis of adjusting effects of mounting force on frequency conversion of mounted nonlinear optics[J]. Applied Optics, 2014, 53(2): 283-90. doi: 10.1364/AO.53.000283
  • 加载中
图(8)
计量
  • 文章访问数:  1017
  • HTML全文浏览量:  395
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-10
  • 修回日期:  2020-07-13
  • 网络出版日期:  2021-07-23
  • 刊出日期:  2021-09-15

目录

    /

    返回文章
    返回