留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子束长程传输中离子通道的振荡特性研究

薛碧曦 郝建红 赵强 张芳 范杰清 董志伟

薛碧曦, 郝建红, 赵强, 等. 电子束长程传输中离子通道的振荡特性研究[J]. 强激光与粒子束, 2021, 33: 093006. doi: 10.11884/HPLPB202133.210187
引用本文: 薛碧曦, 郝建红, 赵强, 等. 电子束长程传输中离子通道的振荡特性研究[J]. 强激光与粒子束, 2021, 33: 093006. doi: 10.11884/HPLPB202133.210187
Xue Bixi, Hao Jianhong, Zhao Qiang, et al. Oscillation properties of ion channel during long-range propagation of electron beam[J]. High Power Laser and Particle Beams, 2021, 33: 093006. doi: 10.11884/HPLPB202133.210187
Citation: Xue Bixi, Hao Jianhong, Zhao Qiang, et al. Oscillation properties of ion channel during long-range propagation of electron beam[J]. High Power Laser and Particle Beams, 2021, 33: 093006. doi: 10.11884/HPLPB202133.210187

电子束长程传输中离子通道的振荡特性研究

doi: 10.11884/HPLPB202133.210187
基金项目: 国家自然科学基金项目(61372050,U1730247)
详细信息
    作者简介:

    薛碧曦,xuebx@ncepu.edu.cn

    通讯作者:

    赵 强,zhaoq@iapcm.ac.cn

  • 中图分类号: O46

Oscillation properties of ion channel during long-range propagation of electron beam

  • 摘要: 离子通道可以有效抑制电子束在等离子体环境内传输过程中的径向扩散,已有工作研究了离子通道对电子束的影响,但离子通道建立过程和暂态特性研究则更有助于理解和利用离子通道在电子束长程传输中的作用。本文利用PIC方法对离子通道的时空分布进行二维模拟,并基于单粒子理论推导出描述离子通道振荡的解析模型,对上述两种模型的结果相互校验。上述模型的计算结果表明,在长程传输过程中,相对论电子束在等离子体内部建立的离子通道是持续周期振荡的,电子束密度、电子束初始半径以及环境等离子体密度都会对离子通道的振荡规律产生影响,针对不同的等离子体环境选择合适的电子束参数可以有效提高离子通道的稳定性,进而提升传输过程中电子束的束流质量。
  • 图  2  离子通道的径向结构

    Figure  2.  Radial structure of the ion channel

    图  1  离子通道振荡示意图

    Figure  1.  Schematic of ion channel oscillation

    图  3  电子束密度与等离子体密度接近($\varepsilon $较小)时离子通道的分布

    Figure  3.  Ion channel when the beam density is close to the plasma density

    图  4  $\varepsilon = 3$时离子通道的分布,${n_{\rm{p}}} = 6.2 \times {10^{14}}\;{{\rm{m}}^{ - 3}}$${r_{{\rm{b}}0}} = 3\;{\rm{ cm}}$

    Figure  4.  Ion channel when $\varepsilon = 3$, ${n_{\rm{p}}} = 6.2 \times {10^{14}}\;{{\rm{m}}^{ - 3}}$ and ${r_{{\rm{b}}0}} = 3\;{\rm{ cm}}$

    图  5  $\varepsilon = 5$时离子通道的分布,${n_{\rm{p}}} = 6.2 \times {10^{14}}\;{{\rm{m}}^{ - 3}}$${r_{{\rm{b}}0}} = 3\;{\rm{ cm}}$

    Figure  5.  Ion channel when $\varepsilon = 5$, ${n_{\rm{p}}} = 6.2 \times {10^{14}}\;{{\rm{m}}^{ - 3}}$ and ${r_{{\rm{b}}0}} = 3\;{\rm{ cm}}$

    图  6  ${r_{{\rm{b}}0}} = 5\;{\rm{ cm}}$时离子通道的分布,${n_{\rm{p}}} = 6.2 \times {10^{14}}\;{{\rm{m}}^{ - 3}}$$\varepsilon = 3$

    Figure  6.  Ion channel when ${r_{{\rm{b}}0}} = 5\;{\rm{ cm}}$, ${n_{\rm{p}}} = 6.2 \times {10^{14}}\;{{\rm{m}}^{ - 3}}$ and $\varepsilon = 3$

    图  7  ${n_{\rm{p}}} = 6.2 \times {10^{1{\rm{5}}}}\;{{\rm{m}}^{ - 3}}$时离子通道的分布,${r_{{\rm{b}}0}} = {\rm{3\; cm}}$$\varepsilon = {\rm{5}}$

    Figure  7.  Ion channel when ${n_{\rm{p}}} = 6.2 \times {10^{1{\rm{5}}}}\;{{\rm{m}}^{ - 3}}$, ${r_{{\rm{b}}0}} = {\rm{3\; cm}}$ and $\varepsilon = {\rm{5}}$

    表  1  电子束及等离子体环境的基本初始参数

    Table  1.   Initial parameters of the electron beam and plasma environment

    initial beam radius ${r_{ {\rm{b0} } } }$/cminitial beam energy ${E_0}$ MeVinitial beam emittance ${\varepsilon _ \bot }$/(mm*mrad)$\varepsilon $plasma density ${n_{\rm{p}}}$/${{\rm{m}}^{ - 3}}$
    3, 5100.21~5$6.2 \times {10^{10}}\sim 6.2 \times {10^{15}}{\rm{ }}$
    下载: 导出CSV
  • [1] Sanchez E R, Powis A T, Kaganovich I D, et al. Relativistic particle beams as a resource to solve outstanding problems in space physics[J]. Front Astron Space Sci, 2019, 6: 71. doi: 10.3389/fspas.2019.00071
    [2] Reeves G D, Delzanno G L, Fernandes P A, et al. The beam plasma interactions experiment: an active experiment using pulsed electron beams[J]. Front Astron Space Sci, 2020, 7: 23. doi: 10.3389/fspas.2020.00023
    [3] Borovsky J E, Delzanno G L. Active experiments in space: the future[J]. Front Astron Space Sci, 2019, 6: 31. doi: 10.3389/fspas.2019.00031
    [4] Krause L H. The interaction of relativistic electron beams with the near-earth space environment[D]. Ann Arbor: University of Michigan, 1998: 1-77.
    [5] Xue Bixi, Hao Jianhong, Zhao Qiang, et al. Influence of geomagnetic field on the long-range propagation of relativistic electron beam in the atmosphere[J]. IEEE Trans Plasma Sci, 2020, 48(11): 3871-3876. doi: 10.1109/TPS.2020.3026088
    [6] Neubert T, Gilchrist B, Wilderman S, et al. Relativistic electron beam propagation in the earth's atmosphere: modeling results[J]. Geophys Res Lett, 1996, 23(9): 1009-1012. doi: 10.1029/96GL00247
    [7] Neubert T, Gilchrist B E. 3D electromagnetic PIC simulations of relativistic electron pulse injections from spacecraft[J]. Adv Space Res, 2002, 29(9): 1385-1390. doi: 10.1016/S0273-1177(02)00185-0
    [8] Sanford T W L. High-power electron-beam transport in long gas cells from 10-3 to 103 Torr nitrogen[J]. Phys Plasmas, 1995, 2(6): 2539-2546. doi: 10.1063/1.871474
    [9] Pal U N, Shukla P, Jadon A S, et al. Estimation of beam and plasma parameters for electron beam transport in ion-focused regime[J]. IEEE Trans Plasma Sci, 2017, 45(12): 3195-3201. doi: 10.1109/TPS.2017.2771337
    [10] Buchanan H L. Electron beam propagation in the ion-focused regime[J]. Phys Fluids, 1987, 30(1): 221-231. doi: 10.1063/1.866173
    [11] Swanekamp S B, Holloway J P, Kammash T, et al. The theory and simulation of relativistic electron beam transport in the ion-focused regime[J]. Phys Fluids B, 1992, 4(5): 1332-1348. doi: 10.1063/1.860088
    [12] Lotov K V. Plasma response to ultrarelativistic beam propagation[J]. Phys Plasmas, 1996, 3(7): 2753-2759. doi: 10.1063/1.872081
    [13] Whittum D H, Sessler A M. Ion-channel laser[J]. Phys Rev Lett, 1990, 64(21): 2511-2514. doi: 10.1103/PhysRevLett.64.2511
    [14] Chen K R, Katsouleas T C, Dawson J M. On the amplification mechanism of the ion-channel laser[J]. IEEE Trans Plasma Sci, 1990, 18(5): 837-841. doi: 10.1109/27.62351
    [15] Xia Yuxi, Yang Shengpeng, Chen Shaoyong, et al. Focusing characteristics of the relativistic electron beam transmitting in ion channel[J]. Plasma Sci Technol, 2020, 22(8): 085001. doi: 10.1088/2058-6272/ab785d
    [16] Smith J R, Shokair I R, Struve K W, et al. Transverse oscillations of a long-pulse electron beam on a laser-formed channel[J]. IEEE Trans Plasma Sci, 1991, 19(5): 850-854. doi: 10.1109/27.108423
    [17] 陈希, 刘盛钢, 谢文楷. 离子通道的暂态特性及其粒子模拟[J]. 电子学报, 2000, 28(3):61-63. (Chen Xi, Liu Shenggang, Xie Wenkai. The transient performance of ion channel and its modelling[J]. Acta Electron Sin, 2000, 28(3): 61-63 doi: 10.3321/j.issn:0372-2112.2000.03.017
    [18] Hockney R W, Eastwood J W. Computer simulation using particles[M]. New York: IOP Publishing Ltd, 1988.
    [19] Bilitza D, Altadill D, Zhang Yongliang, et al. The international reference ionosphere 2012—a model of international collaboration[J]. J Space Weather Space Clim, 2014, 4: A07. doi: 10.1051/swsc/2014004
    [20] 金佑民, 樊友三. 低温等离子体物理基础[M]. 北京: 清华大学出版社, 1983: 12-14.

    Jin Youmin, Fan Yousan. Fundamentals of low temperature plasma physics[M]. Beijing: Tsinghua University Press, 1983: 12-14).
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  990
  • HTML全文浏览量:  283
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-17
  • 修回日期:  2021-07-04
  • 网络出版日期:  2021-07-27
  • 刊出日期:  2021-09-15

目录

    /

    返回文章
    返回