留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电磁拓扑的配电网络雷电过电压分析

张胤 廖成 尚玉平 杜伟 叶志红

张胤, 廖成, 尚玉平, 等. 基于电磁拓扑的配电网络雷电过电压分析[J]. 强激光与粒子束, 2021, 33: 083001. doi: 10.11884/HPLPB202133.210189
引用本文: 张胤, 廖成, 尚玉平, 等. 基于电磁拓扑的配电网络雷电过电压分析[J]. 强激光与粒子束, 2021, 33: 083001. doi: 10.11884/HPLPB202133.210189
Zhang Yin, Liao Cheng, Shang Yuping, et al. Analysis of lightning overvoltages at the junction of distribution network based on electromagnetic topology[J]. High Power Laser and Particle Beams, 2021, 33: 083001. doi: 10.11884/HPLPB202133.210189
Citation: Zhang Yin, Liao Cheng, Shang Yuping, et al. Analysis of lightning overvoltages at the junction of distribution network based on electromagnetic topology[J]. High Power Laser and Particle Beams, 2021, 33: 083001. doi: 10.11884/HPLPB202133.210189

基于电磁拓扑的配电网络雷电过电压分析

doi: 10.11884/HPLPB202133.210189
基金项目: 国家自然科学基金项目(61771407)
详细信息
    作者简介:

    张 胤(1994—),男,博士生,从事传输线电磁兼容问题研究

    通讯作者:

    廖 成(1964—),男,博士,教授,从事计算电磁学、天线理论与技术、电波传播研究

  • 中图分类号: TM863

Analysis of lightning overvoltages at the junction of distribution network based on electromagnetic topology

  • 摘要: 将适用于复杂系统各个节点电磁响应同步求解的电磁拓扑方法引入到配电网络雷电过电压问题的分析中。首先,给出了传输线网络的BLT方程及其元素构建方法;然后,通过一个复杂的配电网络对电磁拓扑的分析流程进行了详细说明,并重点展示了理想节点散射矩阵的求解步骤。结果表明:电磁拓扑方法可以应用在配电网络节点雷电过电压的分析中,其计算结果与CST的结果非常吻合,且耗时远远低于CST。
  • 图  1  电磁波作用电子系统的电磁拓扑图

    Figure  1.  Diagram of electromagnetic topology of an electronic system irradiated by the electromagnetic waves

    图  2  典型配电线路电磁拓扑及杆塔示意图

    Figure  2.  Diagram of the EMT and support tower of the typical distribution lines

    图  3  j3j4j6的节点示意图

    Figure  3.  Diagram of the junctions j3j4 and j6

    图  4  配电网络终端通过匹配负载接地时负载处的雷电过电压计算结果

    Figure  4.  Calculation results of the lightning overvoltages at the loads when the distribution network is terminated by a matching load

    图  5  配电网络终端通过100 Ω负载接地时负载处的雷电过电压计算结果

    Figure  5.  Calculation results of the lightning overvoltages at the loads when the distribution network is terminated by a load of 100 Ω

    表  1  雷电基电流参数

    Table  1.   Parameters of lightning-base-current

    IL01/kAτ/μsτ/μsn1IL01/kAτ/μsτ/μsn2
    10.70.252.526.52.12302
    下载: 导出CSV
  • [1] 陈家宏, 赵淳, 王剑, 等. 基于直接获取雷击参数的输电线路雷击风险优化评估方法[J]. 高电压技术, 2015, 41(1):14-20. (Chen Jiahong, Zhao Chun, Wang Jian, et al. Optimal lightning risk assessment method of transmission line based on direct acquisition of lightning stroke parameter[J]. High Voltage Engineering, 2015, 41(1): 14-20
    [2] Zhang Liang, Wang Lei, Yang Jin, et al. Effect of overhead shielding wires on the lightning-induced voltages of multiconductor lines above the lossy ground[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(2): 458-466. doi: 10.1109/TEMC.2018.2825287
    [3] Zhang Yin, Liao Cheng, Shang Yuping. Fast evaluation of lightning electromagnetic fields based on matrix pencil method in time domain[J]. Microwave and Optical Technology Letters, 2021, 63(4): 1029-1034. doi: 10.1002/mop.32738
    [4] 李青山, 皇甫羽飞, 张帅, 等. 110 kV输电线路电容降压取电系统雷电过电压分析[J]. 电网技术, 2015, 39(7):2058-2063. (Li Qingshan, Huangfu Yufei, Zhang Shuai, et al. Lighting over-voltage analysis of 110 kV transmission line capacitor step-down power system[J]. Power System Technology, 2015, 39(7): 2058-2063
    [5] 李琳, 齐秀军. 配电线路感应雷过电压计算[J]. 高电压技术, 2011, 37(5):1093-1099. (Li Lin, Qi Xiujun. Calculation of the lightning induced voltages on power distribution line[J]. High Voltage Engineering, 2011, 37(5): 1093-1099
    [6] Tesche F M, Ianoz M V, Karlsson T. EMC analysis methods and computational models[M]. New York: Wiley, 1997.
    [7] Barker P P, Short T A, Eybert-Berard A R, et al. Induced voltage measurements on an experimental distribution line during nearby rocket triggered lightning flashes[J]. IEEE Transactions on Power Delivery, 1996, 11(2): 982-995. doi: 10.1109/59.496184
    [8] Paulino J O S, Barbosa C F, Lopes I J S, et al. The peak value of lightning-induced voltages in overhead lines considering the ground resistivity and typical return stroke parameters[J]. IEEE Transactions on Power Delivery, 2011, 26(2): 920-926. doi: 10.1109/TPWRD.2010.2095887
    [9] Liu Xin, Zhang Mengmeng, Wang Tao, et al. Fast evaluation of light ning-induced voltages of overhead line and buried cable considering the lossy ground[J]. IET Science, Measurement & Technology, 2019, 13(1): 67-73.
    [10] 张波, 薛惠中, 金祖山, 等. 遭受雷击时输电杆塔及其接地装置的暂态电位分布[J]. 高电压技术, 2013, 39(2):393-398. (Zhang Bo, Xue Huizhong, Jin Zushan, et al. Transient potential distribution of transmission tower and its grounding device under lightning[J]. High Voltage Engineering, 2013, 39(2): 393-398 doi: 10.3969/j.issn.1003-6520.2013.02.020
    [11] 曹晓斌, 高竹青, 马御堂, 等. 雷击下500 kV杆塔接地装置的散流有效性[J]. 高电压技术, 2017, 43(5):1596-1601. (Cao Xiaobin, Gao Zhuqing, Ma Yutang, et al. Current divergence validity of 500 kV tower grounding device under lightning stroke[J]. High Voltage Engineering, 2017, 43(5): 1596-1601
    [12] Sheshyekani K, Paknahad J. Lightning electromagnetic fields and their induced voltages on overhead lines: the effect of a horizontally stratified ground[J]. IEEE Transactions on Power Delivery, 2015, 30(1): 290-298. doi: 10.1109/TPWRD.2014.2329902
    [13] Sheshyekani K, Paknahad J. The effect of an ocean-land mixed propagation path on the lightning electromagnetic fields and their induced voltages on overhead lines[J]. IEEE Transactions on Power Delivery, 2015, 30(1): 229-236. doi: 10.1109/TPWRD.2014.2339096
    [14] 谢海燕. 瞬态电磁拓扑理论及其在电子系统电磁脉冲效应中的应用[D]. 北京: 清华大学, 2010.

    Xie Haiyan. Transient electromagnetic topology theory and its application in electromagnetic pulse effects of electronic systems[D]. Beijing: Tsinghua University, 2010
    [15] Parmantier J P. An efficient technique to calculate ideal junction scattering parameters in multiconductor transmission line networks[J]. Interaction Notes, 1998, 536: 1-13.
    [16] Xiao Pei, Du Pingan, Ren Dan, et al. A hybrid method for calculating the coupling to PCB inside a nested shielding enclosure based on electromagnetic topology[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(6): 1701-1709. doi: 10.1109/TEMC.2016.2588505
    [17] Gong Yanfei, Hao Jianhong, Jiang Luhang. Efficient analytical method for the coupling to penetrated transmission line in multiple enclosures based on electromagnetic topology[J]. IET Science, Measurement & Technology, 2018, 12(3): 335-342.
    [18] Han J H, Ju S H, Kang N W, et al. Wideband coupling modeling analysis by arbitrarily incoming source fields based on the electro-magnetic topology technique[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(1): 28-37. doi: 10.1109/TMTT.2018.2876221
    [19] Han J H. Propagation and scattering supermatrices generation algorithm for implementation of electromagnetic topology technique[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(4): 3037-3046. doi: 10.1109/TAP.2019.2955201
    [20] 何金良, 曾嵘. 配电线路雷电防护[M]. 北京: 清华大学出版社, 2013.

    He Jingliang, Zeng Rong. Lightning protection of distribution line[M]. Beijing: Tsinghua University Press, 2013
    [21] Guo Juo, Xie Yanzhao, Rachidi F. A semi-analytical method to evaluate lightning-induced overvoltages on overhead lines using the matrix pencil method[J]. IEEE Transactions on Power Delivery, 2018, 33(6): 2837-2848. doi: 10.1109/TPWRD.2018.2842237
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  955
  • HTML全文浏览量:  282
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-18
  • 修回日期:  2021-07-08
  • 网络出版日期:  2021-07-21
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回