留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液体介质微/纳秒脉冲放电的特性与机理:现状及进展

李元 温嘉烨 李林波 郜晶 石亚轩 刘志濠 张冠军

李元, 温嘉烨, 李林波, 等. 液体介质微/纳秒脉冲放电的特性与机理:现状及进展[J]. 强激光与粒子束, 2021, 33: 065001. doi: 10.11884/HPLPB202133.210190
引用本文: 李元, 温嘉烨, 李林波, 等. 液体介质微/纳秒脉冲放电的特性与机理:现状及进展[J]. 强激光与粒子束, 2021, 33: 065001. doi: 10.11884/HPLPB202133.210190
Li Yuan, Wen Jiaye, Li Linbo, et al. Characteristics and mechanisms of streamer discharge in liquids under micro/nano-second pulsed voltages: status and advances[J]. High Power Laser and Particle Beams, 2021, 33: 065001. doi: 10.11884/HPLPB202133.210190
Citation: Li Yuan, Wen Jiaye, Li Linbo, et al. Characteristics and mechanisms of streamer discharge in liquids under micro/nano-second pulsed voltages: status and advances[J]. High Power Laser and Particle Beams, 2021, 33: 065001. doi: 10.11884/HPLPB202133.210190

液体介质微/纳秒脉冲放电的特性与机理:现状及进展

doi: 10.11884/HPLPB202133.210190
基金项目: 国家自然科学基金项目(51607139,11635004)
详细信息
    作者简介:

    李 元(1984—),男,博士,副教授,主要从事液相放电基础与应用研究

    通讯作者:

    张冠军(1970—),男,博士,教授,主要从事电力设备状态评估、放电等离子体特性及应用研究

  • 中图分类号: TM85

Characteristics and mechanisms of streamer discharge in liquids under micro/nano-second pulsed voltages: status and advances

  • 摘要: 液相放电是高电压与绝缘技术领域持续的研究热点,深入理解微/纳秒脉冲放电的特性与机理有利于促进液相放电在电气装备设计优化、深远海勘探、先进材料制备等前沿领域的创新与突破。总结梳理了近年来液体介质微/纳秒脉冲流注放电特性与机理研究的进展,从放电模式与转化、分叉行为、击穿过程等方面阐释了流注放电的基础特性,归纳了液体电导率、压强、溶解气体、杂质与添加剂等物性参数对流注放电特性的影响规律,分析了液体介质流注放电起始与发展机制(包括气泡理论、液相直接碰撞电离、场致分子电离、电致伸缩效应等)及其适用范围。在此基础上,展望了液相放电领域的发展方向和面临的挑战,为相关领域的基础研究和工程应用提供参考。
  • 图  1  非极性液体中流注放电的四类典型模式[4]

    Figure  1.  Four typical modes of streamer discharges in nonpolar liquids[4]

    图  2  水中流注放电产生气泡的半径-时间演化规律[29]

    Figure  2.  Bubble radius as a function of time since bubble formation in streamer discharge[29]

    图  3  变压器油中正负极性流注分叉的光学图像与发展模型[39-40]

    Figure  3.  Optical images and propagation models of positive and negative streamers branching in transformer oil[39-40]

    图  4  变压器油中流注分叉三维仿真[44]

    Figure  4.  3D simulation of streamer branching in transformer oil[44]

    图  5  考虑杂质颗粒影响的油中流注分叉过程(二维)[45]

    Figure  5.  Streamer branching process in transformer oil due to impurity (2D)[45]

    图  6  不同电压下水中放电模式与电导率的关系[60]

    Figure  6.  Correlation between discharge modes and water conductivity under different voltages[60]

    图  7  不同压强下变压器油中流注放电图像[65]

    Figure  7.  Image of streamer discharge in transformer oil under different pressure[65]

    图  8  水中正极性流注放电发展过程(σ=90 μS/cm)[60]

    Figure  8.  Propagation of positive streamer in water (σ=90 μS/cm)[60]

    图  9  脉冲电压下绝缘油中流注放电的发展过程[83]

    Figure  9.  Simulations of streamer development in transformer oil under pulsed voltages[83]

    图  10  电致伸缩效应诱导液体电离的机制[91]

    Figure  10.  Schematic of electrostriction-induced liquid ionization[91]

  • [1] 廖瑞金, 梁帅伟, 李剑, 等. 矿物油和天然酯混合绝缘油的理化特性和击穿电压研究[J]. 中国电机工程学报, 2009, 29(13):117-123. (Liao Ruijin, Liang Shuaiwei, Li Jian, et al. Study on the physics and chemistry characteristics and breakdown voltage of a mixed insulation oil composed of mineral oil and natural easter[J]. Proceedings of the CSEE, 2009, 29(13): 117-123 doi: 10.3321/j.issn:0258-8013.2009.13.019
    [2] 周游, 江军, 罗颖婷, 等. 变压器油工频电压击穿特性的统计研究[J]. 绝缘材料, 2015, 48(3):73-77. (Zhou You, Jiang Jun, Luo Yingting, et al. Statistical analysis of AC breakdown voltage for transformer oil[J]. Insulating Materials, 2015, 48(3): 73-77 doi: 10.3969/j.issn.1009-9239.2015.03.015
    [3] 张适昌, 严萍, 王珏, 等. 民用脉冲功率源的进展与展望[J]. 高电压技术, 2009, 35(3):618-631. (Zhang Shichang, Yan Ping, Wang Jue, et al. Development situation and trends of pulsed power sources for civil applications[J]. High Voltage Engineering, 2009, 35(3): 618-631
    [4] Lesaint O. Prebreakdown phenomena in liquids: propagation ‘modes’ and basic physical properties[J]. Journal of Physics D: Applied Physics, 2016, 49: 144001. doi: 10.1088/0022-3727/49/14/144001
    [5] 刘强, 孙鹞鸿. 水中脉冲电晕放电等离子体特性及气泡运动[J]. 高电压技术, 2006, 32(2):54-56. (Liu Qiang, Sun Yaohong. Plasma characteristics of pulsed corona discharge in water and moving process of the bubble[J]. High Voltage Engineering, 2006, 32(2): 54-56 doi: 10.3969/j.issn.1003-6520.2006.02.019
    [6] 孙冰. 液相放电等离子体及其应用[M]. 北京: 科学出版社, 2013.

    Sun Bing. Discharge plasma in liquid and its applications[M]. Beijing: Science Press, 2013).
    [7] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3):685-705. (Shao Tao, Zhang Cheng, Wang Ruixue, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705
    [8] 张国伟, 丛培天, 盛亮, 等. 强光一号水开关击穿性能[J]. 强激光与粒子束, 2010, 22(3):574-578. (Zhang Guowei, Cong Peitian, Sheng Liang, et al. Breakdown performance of water switches in Qiangguang-Ⅰ facility[J]. High Power Laser and Particle Beams, 2010, 22(3): 574-578 doi: 10.3788/HPLPB20102203.0574
    [9] 李元, 孙滢, 刘毅, 等. 液电效应及电火花震源的研究现状与展望[J]. 高电压技术, 2021, 47(3):753-765. (Li Yuan, Sun Ying, Liu Yi, et al. Electrohydraulic effect and sparker source: current situation and prospects[J]. High Voltage Engineering, 2021, 47(3): 753-765
    [10] 严辉, 黄逸凡, 裴彦良, 等. 等离子体震源及在海洋勘探中的应用[J]. 高电压技术, 2012, 38(7):1711-1718. (Yan Hui, Huang Yifan, Pei Yanliang, et al. Plasma seismic source and its application in oceanic seismic exploration[J]. High Voltage Engineering, 2012, 38(7): 1711-1718
    [11] Sun Ying, Timoshkin I V, Given M J, et al. Impulsive discharges in water: acoustic and hydrodynamic parameters[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 2156-2166. doi: 10.1109/TPS.2016.2583066
    [12] 李元, 郜晶, 朱光远, 等. 液相等离子体技术制备碳纳米材料的进展与趋势[J]. 中国电机工程学报, 2021, 41(8):2909-2919. (Li Yuan, Gao Jing, Zhu Guangyuan, et al. Advances and trends of carbon nanomaterial synthesis by liquid-plasma processing[J]. Proceedings of the CSEE, 2021, 41(8): 2909-2919
    [13] Saito G, Akiyama T. Nanomaterial synthesis using plasma generation in liquid[J]. Journal of Nanomaterials, 2015, 16: 299.
    [14] 韩若愚, 李柳霞, 钱盾, 等. 液体中金属丝电爆炸的研究现状与展望[J]. 高电压技术, 2021, 47(3):766-777. (Han Ruoyu, Li Liuxia, Qian Dun, et al. Exploding metal wires in liquids: current situation and prospects[J]. High Voltage Engineering, 2021, 47(3): 766-777
    [15] 孙冰, 信延彬, 朱小梅, 等. 液体燃料醇类重整制氢技术的研究现状分析[J]. 高电压技术, 2019, 45(12):4096-4107. (Sun Bing, Xin Yanbin, Zhu Xiaomei, et al. Analysis of technical research status of hydrogen production from reforming liquid fuel alcohols[J]. High Voltage Engineering, 2019, 45(12): 4096-4107
    [16] 张晋琪, 蒋兴良, 陈志刚. 液体介质快脉冲电压下击穿特性研究[J]. 强激光与粒子束, 2006, 18(6):1053-1056. (Zhang Jinqi, Jiang Xingliang, Chen Zhigang. Characteristics study of short-pulsed dielectric breakdown in liquids[J]. High Power Laser and Particle Beams, 2006, 18(6): 1053-1056
    [17] 周中升, 章程, 邵涛, 等. 纳秒脉冲下变压器油绝缘的击穿与闪络特性[J]. 高电压技术, 2014, 40(10):3290-3296. (Zhou Zhongsheng, Zhang Cheng, Shao Tao, et al. Breakdown and flashover characteristics in transformer oil under nanosecond pulses[J]. High Voltage Engineering, 2014, 40(10): 3290-3296
    [18] 张永民, 邱爱慈, 黄建军, 等. 几项新技术在"闪光二号"加速器上的应用[J]. 强激光与粒子束, 2008, 20(5):876-880. (Zhang Yongmin, Qiu Aici, Huang Jianjun, et al. Application of new techniques to "Flash-Ⅱ" accelerator[J]. High Power Laser and Particle Beams, 2008, 20(5): 876-880
    [19] 陈思富, 黄子平, 石金水. 带电粒子加速器的基本类型及其技术实现[J]. 强激光与粒子束, 2020, 32:045101. (Chen Sifu, Huang Ziping, Shi Jinshui. Basic types and technological implementation of charged particle accelerators[J]. High Power Laser and Particle Beams, 2020, 32: 045101
    [20] 肖德龙, 丁宁, 王冠琼, 等. Z箍缩聚变及高能量密度应用研究进展[J]. 强激光与粒子束, 2020, 32:092005. (Xiao Delong, Ding Ning, Wang Guanqiong, et al. Review of Z-pinch driven fusion and high energy density physics applications[J]. High Power Laser and Particle Beams, 2020, 32: 092005
    [21] 邱爱慈, 孙凤举. Z箍缩和闪光照相用快脉冲功率源技术的发展[J]. 强激光与粒子束, 2008, 20(12):1937-1946. (Qiu Aici, Sun Fengju. Development of fast pulsed power driver for radiography and Z-pinch[J]. High Power Laser and Particle Beams, 2008, 20(12): 1937-1946
    [22] 梁川, 章林文, 李欣. 压力水介质脉冲击穿实验研究[J]. 强激光与粒子束, 2004, 16(6):787-790. (Liang Chuan, Zhang Linwen, Li Xin. Research on the pulsed breakdown of the pressured deionized water[J]. High Power Laser and Particle Beams, 2004, 16(6): 787-790
    [23] 张自成, 杨建华, 张建德, 等. 加压水介质耐μs级高电压击穿实验研究[J]. 强激光与粒子束, 2005, 17(5):761-764. (Zhang Zicheng, Yang Jianhua, Zhang Jiande, et al. Investigation of high electrical breakdown for pressurized water dielectric with microsecond charging[J]. High Power Laser and Particle Beams, 2005, 17(5): 761-764
    [24] Ni Heli, Zhang Qiaogen, Wu Zhicheng, et al. Alternating streamer propagation in mineral oil under bipolar oscillating impulse voltage[J]. Physics of Plasmas, 2018, 25: 072125. doi: 10.1063/1.5041527
    [25] 丛培天, 蒯斌, 邱爱慈, 等. 脉冲电压下的自击穿水介质开关击穿特性和电路参数实验研究[J]. 强激光与粒子束, 2005, 17(9):1414-1418. (Cong Peitian, Kuai Bin, Qiu Aici, et al. Experimental study on circuit parameters and breakdown properties of water switch under pulsed voltage[J]. High Power Laser and Particle Beams, 2005, 17(9): 1414-1418
    [26] Lesaint O, Massala G. Positive streamer propagation in large oil gaps: experimental characterization of propagation modes[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1998, 5(3): 360-370. doi: 10.1109/94.689425
    [27] Duy C T, Lesaint O, Denat A, et al. Streamer propagation and breakdown in natural ester at high voltage[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(6): 1582-1594. doi: 10.1109/TDEI.2009.5361578
    [28] Touya G, Reess T, Pécastaing L, et al. Development of subsonic electrical discharges in water and measurements of the associated pressure waves[J]. Journal of Physics D: Applied Physics, 2006, 39(24): 5236-5244. doi: 10.1088/0022-3727/39/24/021
    [29] Wen Jiaye, Li Yuan, Li Linbo, et al. Experimental observations and interpretations of bubble-induced discharges under microsecond pulsed voltages in water[J]. Journal of Physics D: Applied Physics, 2020, 53: 425208. doi: 10.1088/1361-6463/ab9f67
    [30] An W, Baumung K, Bluhm H. Underwater streamer propagation analyzed from detailed measurements of pressure release[J]. Journal of Applied Physics, 2007, 101: 053302. doi: 10.1063/1.2437675
    [31] 李显东, 刘毅, 周古月, 等. 针–板电极下水中亚音速流注形态与发展过程[J]. 中国电机工程学报, 2018, 38(5):1562-1571. (Li Xiandong, Liu Yi, Zhou Guyue, et al. Morphology and development of underwater subsonic streamer under needle to plane electrodes[J]. Proceedings of the CSEE, 2018, 38(5): 1562-1571
    [32] Wen Xiaoqiong, Xue Xiaodong. Shock wave release behavior of a pulsed positive streamer discharge in water[J]. AIP Advances, 2019, 9: 075310. doi: 10.1063/1.5108547
    [33] Lai J, Foster J E. Time-resolved imaging of streamer formation inside gaseous bubbles in liquids[J]. Journal of Physics D: Applied Physics, 2020, 53: 025206. doi: 10.1088/1361-6463/ab4c9d
    [34] Starikovskiy A, Yang Yong, Cho Y I, et al. Non-equilibrium plasma in liquid water: dynamics of generation and quenching[J]. Plasma Sources Science and Technology, 2011, 20: 024003. doi: 10.1088/0963-0252/20/2/024003
    [35] Pietronero L, Erzan A, Evertsz C. Theory of fractal growth[J]. Physical Review Letters, 1988, 61(7): 861-864. doi: 10.1103/PhysRevLett.61.861
    [36] Arrayás M, Ebert U, Hundsdorfer W. Spontaneous branching of anode-directed streamers between planar electrodes[J]. Physical Review Letters, 2002, 88: 174502. doi: 10.1103/PhysRevLett.88.174502
    [37] Yoshimura N, Noto F, Kikuchi K. Growth of water trees in polyethylene and silicone rubber by water electrodes[J]. IEEE Transactions on Electrical Insulation, 1977, EI-12(6): 411-416. doi: 10.1109/TEI.1977.297992
    [38] Ichiki R, Kanazawa S, Tomokiyo K, et al. Investigation of three-dimensional characteristics of underwater streamer discharges[J]. Japanese Journal of Applied Physics, 2012, 51: 106101. doi: 10.1143/JJAP.51.106101
    [39] Li Yuan, Zhu Mingxiao, Mu Haibao, et al. Transformer oil breakdown dynamics stressed by fast impulse voltages: experimental and modeling investigation[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 3004-3013. doi: 10.1109/TPS.2014.2320751
    [40] Akiyama H. Streamer discharges in liquids and their applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2000, 7(5): 646-653. doi: 10.1109/94.879360
    [41] Chen Qiulin, Beroual A, Sima W, et al. Influence of microscopic morphological disturbance on the streamer interface stability in liquid dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(1): 198-206. doi: 10.1109/TDEI.2020.009136
    [42] 齐波, 赵晓林, 张书琦, 等. 冲击电压下变压器油中电场特性及电荷运动模型[J]. 中国电机工程学报, 2017, 37(s1):218-229. (Qi Bo, Zhao Xiaolin, Zhang Shuqi, et al. Electric field characteristics and charge motion model in transformer oil under impulse voltage[J]. Proceedings of the CSEE, 2017, 37(s1): 218-229
    [43] Niemeyer L, Pietronero L, Wiesmann H J. Fractal dimension of dielectric breakdown[J]. Physical Review Letters, 1984, 52(12): 1033-1036. doi: 10.1103/PhysRevLett.52.1033
    [44] Jadidian J, Zahn M, Lavesson N, et al. Stochastic and deterministic causes of streamer branching in liquid dielectrics[J]. Journal of Applied Physics, 2013, 114: 063301. doi: 10.1063/1.4816091
    [45] Li Yuan, Li Yahong, Wen Jiaye, et al. How cellulose particles influence streamer propagation and branching in transformer oil: a 2D modelling perspective[J]. Plasma Research Express, 2020, 2: 025011. doi: 10.1088/2516-1067/ab9539
    [46] Martin T H, Guenther A H, Kristiansen M. J. C. Martin on pulsed power[M]. Boston, M A: Springer, 1996.
    [47] Wang Tonglei, Zhang Qiaogen, Ni Heli, et al. Extension of the empirical formula for pulsed electric strength of transformer oil[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(5): 3175-3181. doi: 10.1109/TDEI.2016.7736883
    [48] Hogg M G, Timoshkin I V, Given M J, et al. Impulse breakdown of water with different conductivities[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(5): 1559-1568. doi: 10.1109/TDEI.2012.6311501
    [49] Li Xiandong, Liu Yi, Zhou Guyue, et al. Polarity effect variation on electrical breakdown of water under sub-millisecond pulses[J]. Applied Physics Letters, 2017, 111: 164101. doi: 10.1063/1.4994749
    [50] Cook J A, Gleeson A M, Roberts R M, et al. A spark-generated bubble model with semi-empirical mass transport[J]. The Journal of the Acoustical Society of America, 1997, 101(4): 1908-1920. doi: 10.1121/1.418236
    [51] Timoshkin I V, Fouracre R A, Given M J, et al. Hydrodynamic modelling of transient cavities in fluids generated by high voltage spark discharges[J]. Journal of Physics D: Applied Physics, 2006, 39(22): 4808-4817. doi: 10.1088/0022-3727/39/22/011
    [52] Huang Yifan, Yan Hui, Wang Bingzhe, et al. The electro-acoustic transition process of pulsed corona discharge in conductive water[J]. Journal of Physics D: Applied Physics, 2014, 47: 255204. doi: 10.1088/0022-3727/47/25/255204
    [53] Wen Xiaoqiong, Niu Zhiwen, Hou Bo, et al. Experimental measurement of spatially resolved electron density in a filament of a pulsed positive streamer discharge in water[J]. Applied Physics Letters, 2015, 106: 264101. doi: 10.1063/1.4923375
    [54] Wen Xiaoqiong, Li Shuhan, Liu Jinyuan, et al. Experimental measurement of vapor density in the discharge channel of a pulsed positive streamer discharge in water[J]. Applied Physics Letters, 2014, 105: 084104. doi: 10.1063/1.4894474
    [55] Gasanova S. Aqueous-phase electrical discharges: generation, investigation and application for organics removal from water[D]. Duisburg-Essen: University of Duisburg-Essen, 2013.
    [56] Lubicki P, Cross J D, Jayaram S, et al. Effect of water conductivity on its pulse electric strength[C]//Proceedings of the Conference Record of the 1996 IEEE International Symposium on Electrical Insulation. 1996, 2: 882-886.
    [57] Kolb J F, Joshi R P, Xiao S, et al. Streamers in water and other dielectric liquids[J]. Journal of Physics D: Applied Physics, 2008, 41: 234007. doi: 10.1088/0022-3727/41/23/234007
    [58] Jones H M, Kunhardt E E. The influence of pressure and conductivity on the pulsed breakdown of water[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(6): 1016-1025. doi: 10.1109/94.368641
    [59] Šunka P. Pulse electrical discharges in water and their applications[J]. Physics of Plasmas, 2001, 8(5): 2587-2594. doi: 10.1063/1.1356742
    [60] Panov V A, Vasilyak L M, Vetchinin S P, et al. Slow ‘thermal’ and fast ‘streamer-leader’ breakdown modes in conductive water[J]. Journal of Physics D: Applied Physics, 2018, 51: 354003. doi: 10.1088/1361-6463/aad428
    [61] Kao K C, Mcmath J P C. Time-dependent pressure effect in liquid dielectrics[J]. IEEE Transactions on Electrical Insulation, 1970, EI-5(3): 64-68. doi: 10.1109/TEI.1970.299097
    [62] 贾伟, 邱爱慈, 孙凤举, 等. 加压去离子水短脉冲击穿特性的初步研究[J]. 强激光与粒子束, 2006, 18(4):693-696. (Jia Wei, Qiu Aici, Sun Fengju, et al. Preliminary study of the breakdown characteristics of the pressurized deionized water under short pulse voltage[J]. High Power Laser and Particle Beams, 2006, 18(4): 693-696
    [63] Wang Tonglei, Zhang Qiaogen, Ni Heli, et al. Effect of hydrostatic pressure on the polarity effect of impulse breakdown characteristics of transformer oil[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(4): 2172-2180. doi: 10.1109/TDEI.2017.006274
    [64] Butcher M, Neuber A A, Cevallos M D, et al. Conduction and breakdown mechanisms in transformer oil[J]. IEEE Transactions on Plasma Science, 2006, 34(2): 467-475. doi: 10.1109/TPS.2006.872487
    [65] Linhjell D, Lundgaard L E, Unge M. Pressure dependent propagation of positive streamers in a long point-plane gap in transformer oil[C]//Proceedings of 2019 IEEE 20th International Conference on Dielectric Liquids. 2019: 1-3.
    [66] Bunkin N F, Bakum S I. Role of a dissolved gas in the optical breakdown of water[J]. Quantum Electronics, 2006, 36(2): 117-124. doi: 10.1070/QE2006v036n02ABEH013113
    [67] Hayashi Y, Takada N, Kanda H, et al. Effect of fine bubbles on electric discharge in water[J]. Plasma Sources Science and Technology, 2015, 24: 055023. doi: 10.1088/0963-0252/24/5/055023
    [68] Tereshonok D V, Babaeva N Y, Naidis G V, et al. Pre-breakdown phenomena and discharges in a gas-liquid system[J]. Plasma Sources Science and Technology, 2018, 27: 045005. doi: 10.1088/1361-6595/aab6d4
    [69] Šimek M, Hoffer P, Tungli J, et al. Investigation of the initial phases of nanosecond discharges in liquid water[J]. Plasma Sources Science and Technology, 2020, 29: 064001. doi: 10.1088/1361-6595/ab87b7
    [70] Dung N V, Hoidalen H K, Linhjell D, et al. Influence of impurities and additives on negative streamers in paraffinic model oil[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(3): 876-886. doi: 10.1109/TDEI.2013.6518957
    [71] Sigmond R S, Sigmond T, Rolfseng L, et al. The aiming of the bolt: how a flashover finds the weak spot[J]. IEEE Transactions on Plasma Science, 2004, 32(5): 1812-1818. doi: 10.1109/TPS.2004.835950
    [72] Miller W H. Theory of Penning ionization. I. atoms[J]. The Journal of Chemical Physics, 1970, 52(7): 3563-3572. doi: 10.1063/1.1673523
    [73] Chen Mutian, DuYuefan, Lv Yuzhen, et al. Effect of nanoparticles on the dielectric strength of aged transformer oil[C]//2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. 2011: 664-667.
    [74] Segal V, Hjortsberg A, Rabinovich A, et al. AC (60 Hz) and impulse breakdown strength of a colloidal fluid based on transformer oil and magnetite nanoparticles[C]//Proceedings of the Conference Record of the 1998 IEEE International Symposium on Electrical Insulation. 1998, 2: 619-622.
    [75] Hwang J G, Zahn M, O’Sullivan F M, et al. Effects of nanoparticle charging on streamer development in transformer oil-based nanofluids[J]. Journal of Applied Physics, 2010, 107: 014310. doi: 10.1063/1.3267474
    [76] 周远翔, 寇晓适, 杨颖, 等. 纳米改性变压器油制备与绝缘特性研究现状[J]. 绝缘材料, 2016, 49(11):26-35. (Zhou Yuanxiang, Kou Xiaoshi, Yang Ying, et al. Research status on synthesis and insulating properties of nano-modified transformer oil[J]. Insulating Materials, 2016, 49(11): 26-35
    [77] 陈季丹, 刘子玉. 电介质物理学[M]. 北京: 机械工业出版社, 1982.

    Chen Jidan, Liu Ziyu. Dielectric physics[M]. Beijing: China Machine Press, 1982).
    [78] Haidara M, Denat A. Electron multiplication in liquid cyclohexane and propane[J]. IEEE Transactions on Electrical Insulation, 1991, 26(4): 592-597. doi: 10.1109/14.83676
    [79] Sun Anbang, Huo Chao, Zhuang Jie. Formation mechanism of streamer discharges in liquids: a review[J]. High Voltage, 2016, 1(2): 74-80. doi: 10.1049/hve.2016.0016
    [80] Vanraes P, Bogaerts A. Plasma physics of liquids—A focused review[J]. Applied Physics Reviews, 2018, 5: 031103. doi: 10.1063/1.5020511
    [81] Zener C. A theory of the electrical breakdown of solid dielectrics[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1934, 145(855): 523-529.
    [82] Devins J C, Rzad S J, Schwabe R J. Breakdown and prebreakdown phenomena in liquids[J]. Journal of Applied Physics, 1981, 52(7): 4531-4545. doi: 10.1063/1.329327
    [83] 李元, 穆海宝, 邓军波, 等. 正极性纳秒脉冲电压下变压器油中流注放电仿真研究[J]. 物理学报, 2013, 62:124703. (Li Yuan, Mu Haibao, Deng Junbo, et al. Simulational study on streamer discharge in transformer oil under positive nanosecond pulse voltage[J]. Acta Physica Sinica, 2013, 62: 124703 doi: 10.7498/aps.62.124703
    [84] Jadidian J, Zahn M, Lavesson N, et al. Effects of impulse voltage polarity, peak amplitude, and rise time on streamers initiated from a needle electrode in transformer oil[J]. IEEE Transactions on Plasma Science, 2012, 40(3): 909-918. doi: 10.1109/TPS.2011.2181961
    [85] Sima W, Jiang Chilong, Lewin P, et al. Modeling of the partial discharge process in a liquid dielectric: effect of applied voltage, gap distance, and electrode type[J]. Energies, 2013, 6(2): 934-952. doi: 10.3390/en6020934
    [86] Smalø H S, Hestad Ø, Ingebrigtsen S, et al. Field dependence on the molecular ionization potential and excitation energies compared to conductivity models for insulation materials at high electric fields[J]. Journal of Applied Physics, 2011, 109: 073306. doi: 10.1063/1.3562139
    [87] Shneider M N, Pekker M, Fridman A. Theoretical study of the initial stage of sub-nanosecond pulsed breakdown in liquid dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(5): 1579-1582. doi: 10.1109/TDEI.2012.6311503
    [88] Shneider M N, Pekker M. Liquid dielectrics in an inhomogeneous pulsed electric field[M]. Bristol, U K: IOP Publishing, 2016..
    [89] Pekker M, Seepersad Y, Shneider M N, et al. Initiation stage of nanosecond breakdown in liquid[J]. Journal of Physics D: Applied Physics, 2014, 47: 025502. doi: 10.1088/0022-3727/47/2/025502
    [90] Seepersad Y, Pekker M, Shneider M N, et al. Investigation of positive and negative modes of nanosecond pulsed discharge in water and electrostriction model of initiation[J]. Journal of Physics D: Applied Physics, 2013, 46: 355201. doi: 10.1088/0022-3727/46/35/355201
    [91] 李元, 李林波, 温嘉烨, 等. 基于电致伸缩效应的水中纳秒脉冲放电起始机制[J]. 物理学报, 2021, 70:024701. (Li Yuan, Li Linbo, Wen Jiaye, et al. Initiation of nanosecond-pulsed discharge in water: electrostriction effect[J]. Acta Physica Sinica, 2021, 70: 024701 doi: 10.7498/aps.70.20201048
  • 加载中
图(10)
计量
  • 文章访问数:  1486
  • HTML全文浏览量:  478
  • PDF下载量:  237
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-18
  • 修回日期:  2021-06-10
  • 网络出版日期:  2021-06-11
  • 刊出日期:  2021-06-15

目录

    /

    返回文章
    返回