留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

50 MW速调管用分数比脉冲调制器

李运海 郭翔 杨荣 阮征 童义 谢晓峰

李运海, 郭翔, 杨荣, 等. 50 MW速调管用分数比脉冲调制器[J]. 强激光与粒子束, 2021, 33: 095002. doi: 10.11884/HPLPB202133.210220
引用本文: 李运海, 郭翔, 杨荣, 等. 50 MW速调管用分数比脉冲调制器[J]. 强激光与粒子束, 2021, 33: 095002. doi: 10.11884/HPLPB202133.210220
Li Yunhai, Guo Xiang, Yang Rong, et al. Fractional-turn ratio solid-state modulator for 50 MW klystron[J]. High Power Laser and Particle Beams, 2021, 33: 095002. doi: 10.11884/HPLPB202133.210220
Citation: Li Yunhai, Guo Xiang, Yang Rong, et al. Fractional-turn ratio solid-state modulator for 50 MW klystron[J]. High Power Laser and Particle Beams, 2021, 33: 095002. doi: 10.11884/HPLPB202133.210220

50 MW速调管用分数比脉冲调制器

doi: 10.11884/HPLPB202133.210220
详细信息
    作者简介:

    李运海,liyunhai1315@126.com

  • 中图分类号: TN787

Fractional-turn ratio solid-state modulator for 50 MW klystron

  • 摘要: 研制了一套S波段50 MW速调管用分数比脉冲调制器,具有脉冲变压器变比1∶300、初级电源电压1.25 kV、输出峰值功率113 MW等特点。分数比脉冲调制器属于加法器式固态调制器的类型,其原理为分开铁心使其磁场感应叠加,再高变比脉冲变压器升压。利用1∶60的高变比升压脉冲变压器技术,实现了初级单元电路为较低工作电压、各组件模块化、放电单元接地等优点,同时实现了脉冲变压器初级低漏感值、次级绕组低分布电容值、放电单元及传输回路低电感值。工程样机测试结果为输出脉冲电压大于312 kV、脉冲电流大于360 A、脉冲前后沿小于1.4 μs的高功率全固态脉冲调制器,为国内工业辐照加速器、自由电子激光加速器等需要高稳定射频功率源的应用提供一种解决方案。分数比脉冲调制器具有输出脉冲宽度可较大范围调节,可以适应负载阻抗的较大范围变化,无线性调制器中使用的氢闸流管的寿命限制,较低工作电压的高运行可靠性等优点。
  • 图  1  脉冲调制器系统组成原理图

    Figure  1.  Schematic diagram of solid state modulator system

    图  2  放电模块实物照片及测试波形

    Figure  2.  Photo and test waveforms of discharge module

    图  3  分数比脉冲变压器结构原理及模型

    Figure  3.  Structure principle and model diagram of fractional-turn ratio pulse transformer

    图  4  调制器输出仿真波形

    Figure  4.  Simulation waveform of modulator output voltage

    图  5  脉冲变压器电场仿真

    Figure  5.  Electric field simulation of pulse transformer

    图  6  脉冲变压器磁场仿真

    Figure  6.  Magnetic field simulation of pulse transformer

    图  7  脉冲变压器实物照片

    Figure  7.  Photos of pulse transformer

    图  8  工程样机测试现场照片

    Figure  8.  Photo of engineering prototype test site

    图  9  工程样机测试波形

    Figure  9.  Test waveforms of engineering prototype

    表  1  速调管参数表

    Table  1.   Klystron parameters

    typebeam voltage/kVbeam current/Afrequency/GHzpeak power/MWaverage power/kWgain/dBefficiency/%duty/%
    E3730A3123602.8565110.551450.020
    VKX-8311A41031011.99450548400.009
    下载: 导出CSV

    表  2  脉冲调制器设计参数

    Table  2.   Design parameters of pulse modulator

    pulse
    voltage/kV
    pulse
    current/A
    repetition
    rate/Hz
    flat top pulse
    duration/μs
    charge power
    voltage/kV
    pulse
    flatness/%
    pulse-pulse
    regulation/%
    rise time
    (10%~90%)/μs
    fall time
    (90%~10%)/μs
    ≥312≥360504≤1.251(p-p)0.1(p-p)≤1.5≤1.5
    下载: 导出CSV

    表  3  放电回路电感分配表

    Table  3.   Inductance distribution table of discharge circuit

    iteminductance/μH
    discharge unit <0.05
    discharge cable <0.05
    pulse transformer connection <0.1
    pulse transformer leakage inductance
    (after three coils in parallel)
    <0.2
    下载: 导出CSV

    表  4  工程样机测试数据

    Table  4.   Test data of engineering prototype

    parameterpulse
    voltage/kV
    pulse
    curren/A
    repetition
    rate/Hz
    flat top pulse
    duration/μs
    rise time
    (10%~90%)/μs
    fall time
    (90%~10%)/μs
    pulse top
    fluctuation/%
    pulse top
    down/%
    charge power
    voltage/kV
    discharge pulse
    current/A
    0.80 kΩ
    resistance load
    313394504.01.461.390.162.6711502070
    1.23 kΩ
    resistance load
    315257102.50.951.011.811001380
    0.77 kΩ
    water load
    301393504.31.381.270.482.610802130
    下载: 导出CSV

    表  5  测试数据对比

    Table  5.   Test data comparison

    reference
    No.
    pulse
    voltage/kV
    pulse
    curren/A
    load
    impedance/kΩ
    peak
    power/MW
    repetition
    rate/Hz
    flat top pulse
    duration/μs
    rise time
    (10%~90%)/μs
    fall time
    (90%~10%)/μs
    charge power
    voltage/kV
    principle
    113254000.811301021.01.850.0PFN
    124506000.75270502.51.11.726.5PFN
    134504001.131801002~100.54.5solid state
    143504140.851451203.51.51.03.0solid state
    158020000.041605020.62.02.0solid state
    this article3013930.77118504.31.381.271.25solid state
    下载: 导出CSV
  • [1] 郑新, 李文辉, 潘厚忠. 雷达发射机技术[M]. 北京: 电子工业出版社, 2006: 240-242.

    Zheng Xin, Li Wenhui, Pan Houzhong. Technique of radar transmitter[M]. Beijing: Publishing House of Electronics Industry, 2006: 240-242
    [2] Crewson W, Lindholm M, Elmquist K. Green pulsed power achieved by efficient solid state pulsed power technology[C]//Proceedings of 2011 IEEE Pulsed Power Conference. 2011: 1471-1473.
    [3] 黄军, 戴广明, 田为. 几种全固态刚管调制器的对比[J]. 现代雷达, 2010, 32(3):80-83. (Huang Jun, Dai Guangming, Tian Wei. Comparision of several all-solid-state hard tube modulators[J]. Modern Radar, 2010, 32(3): 80-83 doi: 10.3969/j.issn.1004-7859.2010.03.020
    [4] 尚雷, 李为民, 丛晓艳, 等. 大功率固态脉冲调制器技术分析[J]. 高电压技术, 2005, 31(11):28-30. (Shang Lei, Li Weimin, Cong Xiaoyan, et al. Study on the technology of high power, solid-state modulators[J]. High Voltage Engineering, 2005, 31(11): 28-30 doi: 10.3969/j.issn.1003-6520.2005.11.011
    [5] 杨景红, 郑新, 钱锰. 加法器结构的大功率固态脉冲调制器的研究[J]. 现代雷达, 2009, 31(4):80-83. (Yang Jinghong, Zheng Xin, Qian Meng. A study on high-power solid-state pulse modulator of adder topology[J]. Modern Radar, 2009, 31(4): 80-83 doi: 10.3969/j.issn.1004-7859.2009.04.019
    [6] 朱永亮, 王玮. 多路初级绕组脉冲变压器固态调制器[J]. 强激光与粒子束, 2010, 22(4):765-768. (Zhu Yongliang, Wang Wei. Solid state modulator based on multi-primary winding pulse transformer[J]. High Power Laser and Particle Beams, 2010, 22(4): 765-768 doi: 10.3788/HPLPB20102204.0765
    [7] 魏智. 发射机高压脉冲调制器的设计与实践[M]. 北京: 电子工业出版社, 2009: 582, 90-93.

    Wei Zhi. Design and practice of transmitter high voltage pulse modulator[M]. Beijing: Publishing House of Electronics Industry, 2009: 582, 90-93
    [8] 沈坚, 刘超, 戴广明. 用于全固态调制器320 kV分裂式脉冲变压器研制[J]. 磁性元件与电源, 2020(5):10175-10180. (Shen Jian, Liu Chao, Dai Guangming. Development of 320 kV split pulse transformer for all solid state modulator[J]. Magnetic Components and Power, 2020(5): 10175-10180
    [9] 沈坚, 钱锰, 汤长岭, 等. 400 kV高压脉冲变压器设计与仿真[J]. 现代雷达, 2008, 30(12):89-91. (Shen Jian, Qian Meng, Tang Changling, et al. Design and simulation of 400 kV high voltage pulse transformer[J]. Modern Radar, 2008, 30(12): 89-91 doi: 10.3969/j.issn.1004-7859.2008.12.024
    [10] 谭志远, 甘孔银, 黎明, 等. 初次级等效比为1: 43.4分数比脉冲变压器[J]. 强激光与粒子束, 2011, 23(1):277-280. (Tan Zhiyuan, Gan Kongyin, Li Ming, et al. 1: 43.4 fractional-turn ratio pulse transformer[J]. High Power Laser and Particle Beams, 2011, 23(1): 277-280 doi: 10.3788/HPLPB20112301.0277
    [11] 张建华, 尚雷, 王旭明, 等. 130 MW大功率线型脉冲调制器的设计与研究[J]. 雷达科学与技术, 2013, 11(1):87-91, 96. (Zhang Jianhua, Shang Lei, Wang Xuming, et al. Design of 130 MW high power pulse modulator[J]. Radar Science and Technology, 2013, 11(1): 87-91, 96 doi: 10.3969/j.issn.1672-2337.2013.01.016
    [12] 蔡政平, 徐旭哲, 武志勇. 450 kV高功率速调管调制器系统[J]. 强激光与粒子束, 2010, 22(7):1677-1681. (Cai Zhengping, Xu Xuzhe, Wu Zhiyong. 450 kV high power klystron modulator system[J]. High Power Laser and Particle Beams, 2010, 22(7): 1677-1681 doi: 10.3788/HPLPB20102207.1677
    [13] Qrtiz G, Müsing A, Biela J, et al. A 180 MW, 450 kV solid state modulator based on press pack IGBT technology[C]//Proceedings of 2010 IEEE International Power Modulator and High Voltage Conference. 2010: 303-306.
    [14] de Lamare J E, Cassel R L, Nguyen M N, et al. A solid state modulator for driving SLAC 5045 klystrons[C]//PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. Digest of Papers. 2001: 1276-1279.
    [15] 杨景红, 郑新, 钱锰, 等. 160 mW大功率固态调制器的设计与实验[J]. 现代雷达, 2011, 33(9):72-75, 80. (Yang Jinghong, Zheng Xin, Qian Meng, et al. Design and testing of a 160 mW high-power solid-state modulator[J]. Modern Radar, 2011, 33(9): 72-75, 80 doi: 10.3969/j.issn.1004-7859.2011.09.017
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  1207
  • HTML全文浏览量:  338
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-03
  • 修回日期:  2021-08-03
  • 网络出版日期:  2021-08-17
  • 刊出日期:  2021-09-15

目录

    /

    返回文章
    返回