留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低损耗宽带近零色散高非线性光子晶体光纤设计

杜海龙 郑义 庞学民

杜海龙, 郑义, 庞学民. 低损耗宽带近零色散高非线性光子晶体光纤设计[J]. 强激光与粒子束, 2021, 33: 091005. doi: 10.11884/HPLPB202133.210221
引用本文: 杜海龙, 郑义, 庞学民. 低损耗宽带近零色散高非线性光子晶体光纤设计[J]. 强激光与粒子束, 2021, 33: 091005. doi: 10.11884/HPLPB202133.210221
Du Hailong, Zheng Yi, Pang Xuemin. Design of photonic crystal fibers with low loss broadband near-zero dispersion and high nonlinearity[J]. High Power Laser and Particle Beams, 2021, 33: 091005. doi: 10.11884/HPLPB202133.210221
Citation: Du Hailong, Zheng Yi, Pang Xuemin. Design of photonic crystal fibers with low loss broadband near-zero dispersion and high nonlinearity[J]. High Power Laser and Particle Beams, 2021, 33: 091005. doi: 10.11884/HPLPB202133.210221

低损耗宽带近零色散高非线性光子晶体光纤设计

doi: 10.11884/HPLPB202133.210221
基金项目: 河南省基础与前沿技术研究计划项目(162300410269);河南省科技攻关项目(202102310630,202102310201)
详细信息
    作者简介:

    杜海龙,duhailong9804@163.com

  • 中图分类号: TN929.11

Design of photonic crystal fibers with low loss broadband near-zero dispersion and high nonlinearity

  • 摘要: 提出了一种兼具低损耗、宽带近零色散和高非线性的光子晶体光纤结构,该结构光纤包层空气孔直径从纤芯向外层方向渐进增加;应用多极法,通过改变包层空气孔间距Λ、各层空气孔直径和空气孔层数Nr,对光子晶体光纤色散、损耗和非线性特性进行分析,获得了各特性随包层结构参数变化的规律,并最终设计出最佳结构参数。计算结果表明,该结构光纤存在3个零色散点,在1.25~1.55 μm较宽的波长范围内,色散值波动小于0.27 ps·nm−1·km−1,色散斜率小于0.008 ps·km−1·nm−2,1.55 μm波长处损耗为0.021 dB/km,在常用的飞秒激光泵浦波长0.8,1.06,1.55 μm处非线性系数分别达到78.6,60.4,38.2 W−1·km−1
  • 图  1  PCF截面结构

    Figure  1.  Cross-section of PCF

    图  2  统一孔径和渐进孔径的色散比较

    Figure  2.  Dispersion comparison between uniform and progressive aperture

    图  3  统一孔径和渐进孔径的损耗比较

    Figure  3.  Loss comparison between uniform and progressive aperture

    图  4  Λ不同的色散比较

    Figure  4.  Dispersion with different air hole spacing

    图  6  Λ不同的损耗比较

    Figure  6.  Loss with different air hole spacing

    图  5  Λ不同的非线性比较

    Figure  5.  Nonlinearity with different air hole spacing

    图  7  d1不同的色散

    Figure  7.  Dispersion with different d1

    图  9  d1不同的损耗

    Figure  9.  Loss with different d1

    图  8  d1不同的非线性

    Figure  8.  Nonlinearity with different d1

    图  10  d2不同色散比较

    Figure  10.  Dispersion with different d2

    图  11  d2不同的非线性比较

    Figure  11.  Nonlinearity with different d2

    图  12  d3不同的色散比较

    Figure  12.  Dispersion with different d3

    图  13  d4不同的色散比较

    Figure  13.  Dispersion with different d4

    图  14  色散系数

    Figure  14.  Dispersion

    图  15  色散斜率

    Figure  15.  Dispersion slope

    表  1  Nr不同的PCF损耗

    Table  1.   Loss with different Nr

    L/μmloss/(dB·km−1
    Nr=4Nr=5Nr=6
    1.311.930.0490.0014
    1.5545.31.420.053
    下载: 导出CSV
  • [1] Knight J C, Birks T A, Russell P S J, et al. All-silica single-mode optical fiber with photonic crystal cladding[J]. Optics Letters, 1996, 21(19): 1547-1549. doi: 10.1364/OL.21.001547
    [2] 杨建菊. 飞秒脉冲在光子晶体光纤中传输的非线性机理与实验研究[D]. 秦皇岛: 燕山大学, 2017

    Yang Jianju. Nonlinear mechanism and experimental study of femtosecond pulse propagating in photonic crystal fiber[D]. Qinhuangdao: Yanshan University, 2017
    [3] 赵兴涛, 王书涛, 刘晓旭, 等. 光子晶体光纤非线性光谱特性的理论与实验研究[J]. 光谱学与光谱分析, 2016, 36(6):1650-1655. (Zhao Xingtao, Wang Shutao, Liu Xiaoxu, et al. Study on nonlinear spectral properties of photonic crystal fiber in theory and experiment[J]. Spectroscopy and Spectral Analysis, 2016, 36(6): 1650-1655
    [4] 丁慧宇. 高非线性光子晶体光纤特性分析及其布里渊散射效应研究[D]. 北京: 北京邮电大学, 2020

    Ding Huiyu. Analysis of the characteristics of highly nonlinear photonic crystal fibers and study on their Brillouin scattering effect[D]. Beijing: Beijing University of Posts and Telecommunications, 2020
    [5] 黎玥, 董克攻, 李峰云, 等. 长锥区光子晶体光纤实现300W高功率可见光超连续谱输出[J]. 强激光与粒子束, 2021, 33(2):4-6. (Li Yue, Dong Kegong, Li Fengyun, et al. 300 W high power supercontinuum generation of complete visible spectrum by long tapered photonic crystal fiber[J]. High Power Laser and Particle Beams, 2021, 33(2): 4-6
    [6] 李严. 基于高非线性光纤产生超连续谱的数值研究[D]. 湘潭: 湘潭大学, 2020

    Li Yan. Numerical study of supercontinuum generation based on high nonlinear fiber[D]. Xiangtan: Xiangtan University, 2020
    [7] Zhang Haoyu, Li Fengyun, Liao Ruoyu, et al. Supercontinuum generation of 314.7W ranging from 390 to 2400 nm by tapered photonic crystal fiber[J]. Optics Letters, 2021, 46(6): 1429-1432. doi: 10.1364/OL.420707
    [8] Yin Ke, Zhang Bin, Yao Jinmei, et al. 1.9−3.6 μm supercontinuum generation in a very short highly nonlinear Germania fiber with a high mid-infrared power ratio[J]. Optics Letters, 2016, 41(21): 5067-5070. doi: 10.1364/OL.41.005067
    [9] Liu Zhaolun, Zhang Chunlan. Tapered Yb3+-doped photonic crystal fiber for blue-enhanced supercontinuum generation[J]. Optik, 2018, 161: 172-179. doi: 10.1016/j.ijleo.2018.02.021
    [10] Bai Yu, Hao Rui. A simple design of highly birefringent and nonlinear photonic crystal fiber with ultra-flattened dispersion[J]. Optical and Quantum Electronics, 2019, 51: 372. doi: 10.1007/s11082-019-2091-6
    [11] 张学典, 袁曼曼, 常敏, 等. 正方形空气孔光子晶体光纤特性分析[J]. 光电工程, 2018, 45(5):20-28. (Zhang Xuedian, Yuan Manman, Chang Min, et al. Characteristics in square air hole structure photonic crystal fiber[J]. Opto-Electronic Engineering, 2018, 45(5): 20-28
    [12] Agbemabiese P A, Akowuah E K. Numerical analysis of photonic crystal fiber of ultra-high birefringence and high nonlinearity[J]. Scientific Reports, 2020, 10: 21182-21182. doi: 10.1038/s41598-020-77114-x
    [13] 李绪友, 许振龙, 凌卫伟, 等. 高非线性色散平坦光子晶体光纤的数值模拟与分析[J]. 中国激光, 2014, 41:0505003. (Li Xuyou, Xu Zhenlong, Ling Weiwei, et al. Numerical simulation and analysis of photonic crystal fibers with high nonlinearity and flattened chromatic dispersion[J]. Chinese Journal of Lasers, 2014, 41: 0505003 doi: 10.3788/CJL201441.0505003
    [14] 王江昀, 张勇, 曹晔, 等. 一种新型高双折射高非线性的光子晶体光纤特性研究[J]. 南开大学学报(自然科学版), 2014, 47(3):86-92. (Wang Jiangyun, Zhang Yong, Cao Ye, et al. A novel high birefringence photonic crystal fibers with high nonlinear[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2014, 47(3): 86-92
    [15] 杨建菊, 韩颖, 屈玉玮, 等. 高非线性石英基光子晶体光纤产生宽带可调中红外孤子的实验研究[J]. 红外与毫米波学报, 2017, 36(5):636-640. (Yang Jianju, Han Ying, Qu Yuwei, et al. Broadband tunable mid-infrared soliton generation in a highly nonlinear silica based photonic crystal fiber[J]. Journal of Infrared and Millimeter Waves, 2017, 36(5): 636-640 doi: 10.11972/j.issn.1001-9014.2017.05.020
    [16] White T P, Kuhlmey B T, McPhedran R C, et al. Multipole method for microstructured optical fibers. I. Formulation[J]. Journal of the Optical Society of America B, 2002, 19(10): 2322-2330. doi: 10.1364/JOSAB.19.002322
    [17] Xu Huizhen, Wu Jian, Xu Kun, et al. Highly nonlinear all-solid photonic crystal fibers with low dispersion slope[J]. Applied Optics, 2012, 51(8): 1021-1027. doi: 10.1364/AO.51.001021
    [18] 刘兆伦. 光子晶体光纤的光学特性分析与优化设计[D]. 秦皇岛: 燕山大学, 2007

    Liu Zhaolun. Simulation of optical properties and optimal designing of photonic crystal fibers[D]. Qinhuangdao: Yanshan University, 2007
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  734
  • HTML全文浏览量:  342
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-03
  • 修回日期:  2021-08-31
  • 网络出版日期:  2021-09-14
  • 刊出日期:  2021-09-15

目录

    /

    返回文章
    返回