Design of photonic crystal fibers with low loss broadband near-zero dispersion and high nonlinearity
-
摘要: 提出了一种兼具低损耗、宽带近零色散和高非线性的光子晶体光纤结构,该结构光纤包层空气孔直径从纤芯向外层方向渐进增加;应用多极法,通过改变包层空气孔间距Λ、各层空气孔直径和空气孔层数Nr,对光子晶体光纤色散、损耗和非线性特性进行分析,获得了各特性随包层结构参数变化的规律,并最终设计出最佳结构参数。计算结果表明,该结构光纤存在3个零色散点,在1.25~1.55 μm较宽的波长范围内,色散值波动小于0.27 ps·nm−1·km−1,色散斜率小于0.008 ps·km−1·nm−2,1.55 μm波长处损耗为0.021 dB/km,在常用的飞秒激光泵浦波长0.8,1.06,1.55 μm处非线性系数分别达到78.6,60.4,38.2 W−1·km−1。Abstract: A photonic crystal fiber (PCF) structure with low loss, broadband near-zero dispersion and high nonlinearity is proposed. The diameter of the air hole in the cladding increases gradually from the core to the cladding. The dispersion, loss and nonlinear characteristics of the PCF are analyzed by the multipole method through changing the air hole spacing, diameter and the number of air hole layers. Finally, the variation law of each characteristic is obtained and the optimal structure parameters of PCF are designed. The results show that the fiber has three zero dispersion points, the dispersion and dispersion slope is less than 0.27 ps·nm−1·km−1 and 0.008 ps·km−1·nm−2 respectively between 1.25 μm and 1.55 μm, and the loss is 0.021 dB/km at 1.55 μm. The nonlinear coefficients are 78.6 W−1·km−1, 60.4 W−1·km−1, and 38.2 W−1·km−1 at the femtosecond laser pumping wavelength 0.8 μm, 1.06 μm and 1.55 μm respectively.
-
Key words:
- photonic crystal fiber /
- high nonlinearity /
- low loss /
- broadband near-zero dispersion /
- supercontinuum
-
表 1 Nr不同的PCF损耗
Table 1. Loss with different Nr
L/μm loss/(dB·km−1) Nr=4 Nr=5 Nr=6 1.31 1.93 0.049 0.0014 1.55 45.3 1.42 0.053 -
[1] Knight J C, Birks T A, Russell P S J, et al. All-silica single-mode optical fiber with photonic crystal cladding[J]. Optics Letters, 1996, 21(19): 1547-1549. doi: 10.1364/OL.21.001547 [2] 杨建菊. 飞秒脉冲在光子晶体光纤中传输的非线性机理与实验研究[D]. 秦皇岛: 燕山大学, 2017Yang Jianju. Nonlinear mechanism and experimental study of femtosecond pulse propagating in photonic crystal fiber[D]. Qinhuangdao: Yanshan University, 2017 [3] 赵兴涛, 王书涛, 刘晓旭, 等. 光子晶体光纤非线性光谱特性的理论与实验研究[J]. 光谱学与光谱分析, 2016, 36(6):1650-1655. (Zhao Xingtao, Wang Shutao, Liu Xiaoxu, et al. Study on nonlinear spectral properties of photonic crystal fiber in theory and experiment[J]. Spectroscopy and Spectral Analysis, 2016, 36(6): 1650-1655 [4] 丁慧宇. 高非线性光子晶体光纤特性分析及其布里渊散射效应研究[D]. 北京: 北京邮电大学, 2020Ding Huiyu. Analysis of the characteristics of highly nonlinear photonic crystal fibers and study on their Brillouin scattering effect[D]. Beijing: Beijing University of Posts and Telecommunications, 2020 [5] 黎玥, 董克攻, 李峰云, 等. 长锥区光子晶体光纤实现300W高功率可见光超连续谱输出[J]. 强激光与粒子束, 2021, 33(2):4-6. (Li Yue, Dong Kegong, Li Fengyun, et al. 300 W high power supercontinuum generation of complete visible spectrum by long tapered photonic crystal fiber[J]. High Power Laser and Particle Beams, 2021, 33(2): 4-6 [6] 李严. 基于高非线性光纤产生超连续谱的数值研究[D]. 湘潭: 湘潭大学, 2020Li Yan. Numerical study of supercontinuum generation based on high nonlinear fiber[D]. Xiangtan: Xiangtan University, 2020 [7] Zhang Haoyu, Li Fengyun, Liao Ruoyu, et al. Supercontinuum generation of 314.7W ranging from 390 to 2400 nm by tapered photonic crystal fiber[J]. Optics Letters, 2021, 46(6): 1429-1432. doi: 10.1364/OL.420707 [8] Yin Ke, Zhang Bin, Yao Jinmei, et al. 1.9−3.6 μm supercontinuum generation in a very short highly nonlinear Germania fiber with a high mid-infrared power ratio[J]. Optics Letters, 2016, 41(21): 5067-5070. doi: 10.1364/OL.41.005067 [9] Liu Zhaolun, Zhang Chunlan. Tapered Yb3+-doped photonic crystal fiber for blue-enhanced supercontinuum generation[J]. Optik, 2018, 161: 172-179. doi: 10.1016/j.ijleo.2018.02.021 [10] Bai Yu, Hao Rui. A simple design of highly birefringent and nonlinear photonic crystal fiber with ultra-flattened dispersion[J]. Optical and Quantum Electronics, 2019, 51: 372. doi: 10.1007/s11082-019-2091-6 [11] 张学典, 袁曼曼, 常敏, 等. 正方形空气孔光子晶体光纤特性分析[J]. 光电工程, 2018, 45(5):20-28. (Zhang Xuedian, Yuan Manman, Chang Min, et al. Characteristics in square air hole structure photonic crystal fiber[J]. Opto-Electronic Engineering, 2018, 45(5): 20-28 [12] Agbemabiese P A, Akowuah E K. Numerical analysis of photonic crystal fiber of ultra-high birefringence and high nonlinearity[J]. Scientific Reports, 2020, 10: 21182-21182. doi: 10.1038/s41598-020-77114-x [13] 李绪友, 许振龙, 凌卫伟, 等. 高非线性色散平坦光子晶体光纤的数值模拟与分析[J]. 中国激光, 2014, 41:0505003. (Li Xuyou, Xu Zhenlong, Ling Weiwei, et al. Numerical simulation and analysis of photonic crystal fibers with high nonlinearity and flattened chromatic dispersion[J]. Chinese Journal of Lasers, 2014, 41: 0505003 doi: 10.3788/CJL201441.0505003 [14] 王江昀, 张勇, 曹晔, 等. 一种新型高双折射高非线性的光子晶体光纤特性研究[J]. 南开大学学报(自然科学版), 2014, 47(3):86-92. (Wang Jiangyun, Zhang Yong, Cao Ye, et al. A novel high birefringence photonic crystal fibers with high nonlinear[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2014, 47(3): 86-92 [15] 杨建菊, 韩颖, 屈玉玮, 等. 高非线性石英基光子晶体光纤产生宽带可调中红外孤子的实验研究[J]. 红外与毫米波学报, 2017, 36(5):636-640. (Yang Jianju, Han Ying, Qu Yuwei, et al. Broadband tunable mid-infrared soliton generation in a highly nonlinear silica based photonic crystal fiber[J]. Journal of Infrared and Millimeter Waves, 2017, 36(5): 636-640 doi: 10.11972/j.issn.1001-9014.2017.05.020 [16] White T P, Kuhlmey B T, McPhedran R C, et al. Multipole method for microstructured optical fibers. I. Formulation[J]. Journal of the Optical Society of America B, 2002, 19(10): 2322-2330. doi: 10.1364/JOSAB.19.002322 [17] Xu Huizhen, Wu Jian, Xu Kun, et al. Highly nonlinear all-solid photonic crystal fibers with low dispersion slope[J]. Applied Optics, 2012, 51(8): 1021-1027. doi: 10.1364/AO.51.001021 [18] 刘兆伦. 光子晶体光纤的光学特性分析与优化设计[D]. 秦皇岛: 燕山大学, 2007Liu Zhaolun. Simulation of optical properties and optimal designing of photonic crystal fibers[D]. Qinhuangdao: Yanshan University, 2007