留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Novel electron source based on interaction between high power laser and metal wire

Yin Jiapeng Yuan Xiaohui Zhou Zusheng Pei Guoxi Liu Shengguang

殷佳鹏, 远晓辉, 周祖圣, 等. 新型金属丝靶电子源实验研究[J]. 强激光与粒子束, 2021, 33: 094003. doi: 10.11884/HPLPB202133.210244
引用本文: 殷佳鹏, 远晓辉, 周祖圣, 等. 新型金属丝靶电子源实验研究[J]. 强激光与粒子束, 2021, 33: 094003. doi: 10.11884/HPLPB202133.210244
Yin Jiapeng, Yuan Xiaohui, Zhou Zusheng, et al. Novel electron source based on interaction between high power laser and metal wire[J]. High Power Laser and Particle Beams, 2021, 33: 094003. doi: 10.11884/HPLPB202133.210244
Citation: Yin Jiapeng, Yuan Xiaohui, Zhou Zusheng, et al. Novel electron source based on interaction between high power laser and metal wire[J]. High Power Laser and Particle Beams, 2021, 33: 094003. doi: 10.11884/HPLPB202133.210244

新型金属丝靶电子源实验研究

doi: 10.11884/HPLPB202133.210244
详细信息
  • 中图分类号: O539

Novel electron source based on interaction between high power laser and metal wire

Funds: National Natural Science Foundation of China (U1832185)
More Information
  • 摘要: 电子束在基础科学研究、工农业生产和医疗领域发挥了重要作用。提出了一种新型的电子源技术方案:高功率激光脉冲轰击金属丝靶,可以产生大量能量在百keV量级的热电子,一部分热电子在丝靶表面自生电磁场的作用下沿着丝靶运动,丝靶后方可以获得指向性良好的电子束。实验上成功在金、钨和铜丝靶后方获得了电子束团,测量了束团束斑、电荷量和能谱。铜丝靶单发实验收集到的电子束团总电荷量可达3 nC,能量分布在0~240 keV区间内,能谱在100 keV附近呈现峰值。提出了微波压缩方案,设计了2腔微波聚束腔,利用ASTRA对微波腔压缩过程进行了模拟计算。结果显示,可以将电荷量1 nC、长度55 ps的束团压缩至27 ps,满足后续微波加速器对电子源的要求。
  • Figure  1.  Experimental layout

    Figure  2.  Electron beam image on IP board. W wire target with d=0.03 mm,L=150 mm

    Figure  3.  Electron beam profiles on two-layer IP board for three wires

    Figure  4.  Electron spatial distribution on three-layer IP board for tungsten wire of different length

    Figure  5.  Beamlet and energy spectrum

    Figure  6.  E field in the 2-cell RF cavity

    Figure  7.  Initial distribution of electron bunch

    Figure  8.  Bunch length vs injection phase

    Figure  9.  Average beam energy in the RF cavity and bunch length (RMS) in the cavity

  • [1] Chen Sifu, Huang Ziping, Shi Jinshui. Basic types and technological implementation of charged particle accelerators[J]. High Power Laser and Particle Beams, 2020, 32: 045101.
    [2] Tokita S, Otani K, Nishoji T, et al. Collimated fast electron emission from long wires irradiated by intense femtosecond laser pulses[J]. Physical Review Letters, 2011, 106: 255001. doi: 10.1103/PhysRevLett.106.255001
    [3] Nakajima H, Tokita S, Inoue S, et al. Divergence-free transport of laser-produced fast electrons along a meter-long wire target[J]. Physical Review Letters, 2013, 110: 155001. doi: 10.1103/PhysRevLett.110.155001
    [4] Kania B, Sikora J. System identification of a hot cathode electron source: time domain approach[J]. AIP Advances, 2018, 8: 105107. doi: 10.1063/1.5044258
    [5] Qi Fengfeng, Ma Zhuoran, Zhao Lingrong, et al. Breaking 50 femtosecond resolution barrier in MeV ultrafast electron diffraction with a double bend achromat compressor[J]. Physical Review Letters, 2020, 124: 134803. doi: 10.1103/PhysRevLett.124.134803
    [6] Wu Dai, Bai Wei, Li Ming, et al. Prototype experiment preparation of a 54.167MHz laser wire system for FEL-THz facility at CAEP[C]//Proceedings of 4th International Particle Accelerator Conference. 2013.
    [7] Tabak M, Hammer J, Glinsky M E, et al. Ignition and high gain with ultrapowerful lasers[J]. Physics of Plasmas, 1994, 1(5): 1626-1634. doi: 10.1063/1.870664
    [8] Hegelich B M, Jung D, Albright B J, et al. Experimental demonstration of particle energy, conversion efficiency and spectral shape required for ion-based fast ignition[J]. Nuclear Fusion, 2011, 51: 083011. doi: 10.1088/0029-5515/51/8/083011
    [9] Fujioka S, Arikawa1 Y, Kojima S, et al. Fast ignition realization experiment with high-contrast kilo-joule peta-watt LFEX laser and strong external magnetic field[J]. Physics of Plasmas, 2016, 23: 056308. doi: 10.1063/1.4948278
    [10] Tian Ye, Liu Jiansheng, Bai Yafeng, et al. Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation[J]. Nature Photonics, 2017, 11(4): 242-246. doi: 10.1038/nphoton.2017.16
    [11] Yu Tongpu, Ma Yanyun, Chang Wenwei, et al. Numerical simulation on effect of laser parameters on terahertz radiation[J]. High Power Laser and Particle Beams, 2008, 20(6): 943-947.
    [12] Zhuo H B, Zhang S J, Li X H, et al. Terahertz generation from laser-driven ultrafast current propagation along a wire target[J]. Physical Review E, 2017, 95: 013201. doi: 10.1103/PhysRevE.95.013201
    [13] Chen Min, Shenga Z M, Zheng Jun, et al. Surface electron acceleration in relativistic laser-solid interactions[J]. Optics Express, 2006, 14(7): 3093-3098. doi: 10.1364/OE.14.003093
    [14] Zhidkov A, Koga J, Hosokai T, et al. Effects of plasma density on relativistic self-injection for electron laser wake-field acceleration[J]. Physics of Plasmas, 2004, 11(12): 5379-5386. doi: 10.1063/1.1807849
    [15] Karmakar M, Chakrabarti N, Sengupta S. Plasma wakefield excitation in a cold magnetized plasma for particle acceleration[J]. Physics of Plasmas, 2017, 24: 052111. doi: 10.1063/1.4982808
    [16] Tanaka K A, Yabuuchi T, Sato T, et al. Calibration of imaging plate for high energy electron spectrometer[J]. Review of Scientific Instruments, 2005, 76: 013507. doi: 10.1063/1.1824371
  • 加载中
图(9)
计量
  • 文章访问数:  713
  • HTML全文浏览量:  293
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-18
  • 修回日期:  2021-07-26
  • 网络出版日期:  2021-09-04
  • 刊出日期:  2021-09-15

目录

    /

    返回文章
    返回