Effect of Zr doping material on the structure and performance of tungsten electrode
-
摘要: 采用中频感应加热烧结方法制备了W-1.5%La2O3-0.1%Y2O3-0.1%ZrO2和W-1.5%La2O3-0.1%Y2O3-0.08%ZrH2电子发射材料,烧结样品的致密度约为95.5%。热电子发射测试结果表明,添加氢化锆的热电子发射材料样品的零场发射电流密度大于添加氧化锆的样品,分析认为是添加的氢化锆在烧结时,发生分解,生成活性的Zr可以捕获钨晶界中的杂质氧,净化晶界,从而提高了电子发射;维氏显微硬度表明添加氢化锆样品的硬度高于添加氧化锆的样品,分析表明是氢化锆的添加有效改善了钨晶粒之间的结合性,提升了钨电子发射材料的硬度。利用SEM,EDS,XRD、金相显微镜等表面分析设备对样品进行了表征,样品结构显示添加氢化锆与添加氧化锆相比,不仅钨晶粒尺寸由13.63 μm降至11.63 μm,而且稀土相尺寸由1.87 μm降至1.66 μm,这种组织结构的变化有利于电子发射。
-
关键词:
- 稀土钨热电子发射材料 /
- 晶粒尺寸 /
- 第二相尺寸 /
- 热电子发射 /
- 氢化锆
Abstract: The W-1.5%La2O3-0.1%Y2O3-0.1%ZrO2 and W-1.5%La2O3-0.1%Y2O3-0.08%ZrH2 electron emission materials were prepared by the intermediate frequency induction heating sintering method. The density of the sintered sample is about 95.5%. The thermionic emission test results show that the zero field emission current density of the thermionic emission material sample added with zirconium hydride is greater than that of the sample added with zirconia. The analysis illustrates that the added zirconium hydride decomposes during sintering, and the active Zr can capture tungsten. The impurity oxygen in the grain boundary purifies the grain boundary, thereby improving electron emission; Vickers microhardness measurement shows that the hardness of the sample with zirconium hydride added is higher than that of the sample with zirconium oxide. Analysis shows that the addition of zirconium hydride effectively improves the bonding between the tungsten crystal grains and enhances the hardness of the tungsten electron-emitting material. The samples were characterized by SEM, EDS, XRD, metallographic microscope and other surface analysis equipment. The structure shows that the addition of zirconium hydride, compared with the addition of zirconia, not only decreases the size of tungsten grains from 13.63 μm to 11.63 μm, but also decreases the size of the rare earth phase from 1.87 μm to 1.66 μm. This change in organizational structure is conducive to electron emission. -
表 1 氧化物质量分数
Table 1. Oxide mass fraction
number w(La2O3)/% w(Y2O3)/% w(ZrO2)/% 1# 1.5 0.1 0.1 2# 1.5 0.1 0.1(0.08%ZrH2) 表 2 不同烧结样品的密度和硬度
Table 2. Density and hardness of different sintered samples
number constituent actual density/(g·cm−3) compactness/% Vicbers hardness/HV 1# W-La2O3-Y2O3-ZrO2 18.37 96.03 384.8(±3) 2# W-La2O3-Y2O3-ZrH2 18.33 95.82 395.8(±5) 表 3 XRD的半定量分析
Table 3. Semi-quantitative analysis of XRD
number constituent w (La2Zr2O7)/% 1# W-La2O3-Y2O3-ZrO2 0.01256 2# W-La2O3-Y2O3-ZrH2 0.01577 -
[1] 郭艳群, 聂祚仁, 席晓丽, 等. 钨热电子发射材料的研究进展[J]. 稀有金属, 2005, 29(2):200-205. (Guo Yanqun, Nie Zuoren, Xi Xiaoli, et al. Advances in research on tungsten cathode materials[J]. Chinese Journal of Rare Metals, 2005, 29(2): 200-205 doi: 10.3969/j.issn.0258-7076.2005.02.016 [2] 杨建参, 聂祚仁, 周美玲, 等. 稀土钨电极材料的研究[J]. 中国钨业, 2007, 22(1):39-41. (Yang Jiancan, Nie Zuoren, Zhou Meiling, et al. On tungsten electrode doped with rare earth oxides[J]. China Tungsten Industry, 2007, 22(1): 39-41 doi: 10.3969/j.issn.1009-0622.2007.01.011 [3] 杨宇锋, 唐元春. 稀土钨电极在高强度气体放电灯中的应用研究[J]. 中国钨业, 2005, 20(5):22-25. (Yang Yufeng, Tang Yuanchun. Study on application of W-REO electrodes in high-intensity gas discharge lamps[J]. China Tungsten Industry, 2005, 20(5): 22-25 doi: 10.3969/j.issn.1009-0622.2005.05.007 [4] 李明辉. 我国钨电极行业现状及未来发展趋势[J]. 世界有色金属, 2019(15):140-141. (Li Minghui. The status quo and future development trend of my country's tungsten electrode industry[J]. World Nonferrous Metals, 2019(15): 140-141 doi: 10.3969/j.issn.1002-5065.2019.15.084 [5] 周美玲, 聂祚仁, 陈颖, 等. 稀土钨电极研究与应用[J]. 中国钨业, 2000, 15(1):30-34. (Zhou Meiling, Nie Zuoren, Chen Ying, et al. Research and development of RE-tungsten electrodes[J]. China Tungsten Industry, 2000, 15(1): 30-34 doi: 10.3969/j.issn.1009-0622.2000.01.010 [6] 朱文光, 杨建参, 西宇辰, 等. TIG焊用几种钨电极的焊接性能研究[J]. 稀有金属, 2014, 38(5):793-799. (Zhu Wenguang, Yang Jiancan, Xi Yuchen, et al. Welding performance of several TIG tungsten electrodes[J]. Chinese Journal of Rare Metals, 2014, 38(5): 793-799 [7] 王芦燕, 于月光, 彭鹰, 等. 不同工况下钨电极抗烧损性能研究[J]. 有色金属工程, 2019, 9(10):21-28. (Wang Luyan, Yu Yueguang, Peng Ying, et al. Study on anti-burning performance of tungsten electrode under different working conditions[J]. Nonferrous Metals Engineering, 2019, 9(10): 21-28 doi: 10.3969/j.issn.2095-1744.2019.10.004 [8] Xie Z M, Liu R, Zhang T, et al. Achieving high strength/ductility in bulk W-Zr-Y2O3 alloy plate with hybrid microstructure[J]. Materials & Design, 2016, 107: 144-152. [9] Xie Z M, Liu R, Fang Q F, et al. Spark plasma sintering and mechanical properties of zirconium micro-alloyed tungsten[J]. Journal of Nuclear Materials, 2014, 444(1/3): 175-180. [10] 张莹超. 稀土钨电极工作表面及电子发射机理研究[D]. 北京: 北京工业大学, 2020Zhang Yingchao. Study on the working surface of rare earth tungsten electrode and electron emission mechanism[D]. Beijing: Beijing University of Technology, 2020 [11] 郭艳群. 稀土氧化物-钨热电子发射材料性能与机理研究[D]. 北京: 北京工业大学, 2004Guo Yanqun. Study on thermionic emission property and mechanism of tungsten cathode material doped with rare-earth oxides[D]. Beijing: Beijing University of Technology, 2004 [12] 王新刚, 宋华, 王茂林, 等. 第二相粒子大小对Mo-La2O3阴极电子发射性能的影响[J]. 稀有金属材料与工程, 2010, 39(11):1928-1932. (Wang Xingang, Song Hua, Wang Maolin, et al. Effects of second phase particle size on electron emission ability of Mo-La2O3 cathode[J]. Rare Metal Materials and Engineering, 2010, 39(11): 1928-1932 [13] 花思明. 浅谈晶粒度测量不确定度评定方法[J]. 质量技术监督研究, 2015(2):9-11,15. (Hua Siming. Discussion on the evaluation method of measurement uncertainty of grain size[J]. Quality and Technical Supervision Research, 2015(2): 9-11,15 doi: 10.3969/j.issn.1674-5981.2015.02.003 [14] 吕秀乾, 石正岩, 翟海萌. 直线截点法测定金属平均晶粒度的不确定度评定[J]. 理化检验-物理分册, 2018, 54(4):265-268. (Lü Xiuqian, Shi Zhengyan, Zhai Haimeng. Uncertainty evaluation on average grain size of metals measured by straight-line cutting point method[J]. Physical Testing and Chemical Analysis Part A:Physical Testing, 2018, 54(4): 265-268 [15] 刘松. 截点法测量金属平均晶粒度的不确定度评定及分析[J]. 失效分析与预防, 2020, 15(1):6-11. (Liu Song. Evaluation and analysis on uncertainty of measuring metal average grain size by intersection point method[J]. Failure Analysis and Prevention, 2020, 15(1): 6-11 doi: 10.3969/j.issn.1673-6214.2020.01.002 [16] 王力, 邝用庚, 张保红, 等. 钨热阴极材料的研究进展[J]. 粉末冶金工业, 2014, 24(4):55-61. (Wang Li, Kuang Yonggeng, Zhang Baohong, et al. Research progress on tungsten hot cathode materials[J]. Powder Metallurgy Industry, 2014, 24(4): 55-61 doi: 10.3969/j.issn.1006-6543.2014.04.010 [17] 席晓丽, 聂祚仁, 杨建参, 等. 掺杂方式对钨电子发射材料性能和结构的影响[J]. 稀有金属, 2004, 28(2):293-296. (Xi Xiaoli, Nie Zuoren, Yang Jiancan, et al. Effect of doping methods on characterization and structure of tungsten electronic emission material[J]. Chinese Journal of Rare Metals, 2004, 28(2): 293-296 doi: 10.3969/j.issn.0258-7076.2004.02.001 [18] 王金淑, 田恬, 刘伟, 等. 铼掺杂对含钪阴极性能与微观结构的影响[J]. 北京工业大学学报, 2015, 41(4):481-485. (Wang Jinshu, Tian Tian, Liu Wei, et al. Emission property and microstructure of Re doped cathode[J]. Journal of Beijing University of Technology, 2015, 41(4): 481-485