留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率谐振式波导缝隙阵宽角扫描技术

马嘉雯 孙云飞 宛建峰 张强 袁成卫

马嘉雯, 孙云飞, 宛建峰, 等. 高功率谐振式波导缝隙阵宽角扫描技术[J]. 强激光与粒子束, 2021, 33: 103002. doi: 10.11884/HPLPB202133.210307
引用本文: 马嘉雯, 孙云飞, 宛建峰, 等. 高功率谐振式波导缝隙阵宽角扫描技术[J]. 强激光与粒子束, 2021, 33: 103002. doi: 10.11884/HPLPB202133.210307
Ma Jiawen, Sun Yunfei, Wan Jianfeng, et al. Investigationon of wide-angle scanning technology for high power resonant waveguide slot array antenna[J]. High Power Laser and Particle Beams, 2021, 33: 103002. doi: 10.11884/HPLPB202133.210307
Citation: Ma Jiawen, Sun Yunfei, Wan Jianfeng, et al. Investigationon of wide-angle scanning technology for high power resonant waveguide slot array antenna[J]. High Power Laser and Particle Beams, 2021, 33: 103002. doi: 10.11884/HPLPB202133.210307

高功率谐振式波导缝隙阵宽角扫描技术

doi: 10.11884/HPLPB202133.210307
详细信息
    作者简介:

    马嘉雯,jiawenm98@163.com

  • 中图分类号: TN45

Investigationon of wide-angle scanning technology for high power resonant waveguide slot array antenna

  • 摘要: 在传统高功率缝隙波导阵列中,缝隙间的相互耦合严重影响了阵列的宽角扫描能力。以实现阵列宽角波束扫描为目标,通过分析阵列扫描特性,从提高缝隙阵元间隔离度的角度出发,提出在阵列中引入隔离栅结构,降低了阵元间耦合对阵列大角度扫描时的影响。在此基础上,设计了基于波导窄边斜缝的谐振式阵列天线,采用电磁仿真软件优化阵列。数值模拟结果表明,未采取措施前阵列的最大扫描范围为±34°,引入隔离栅后扫描范围可扩大至±45°,波导端口S11≤−10 dB,增益仅下降了2.3 dB,单根缝隙波导功率容量达330 MW,有应用于高功率微波领域的潜质。
  • 图  1  窄边波导缝隙阵及其等效电路模型

    Figure  1.  Narrow waveguide slot array and equivalent circuit

    图  2  窄边斜缝交叉极化

    Figure  2.  Cross polarization of inclined slot

    图  3  3种常见扼制交叉极化的结构

    Figure  3.  Three kinds of cross-polarization suppressing structure

    图  4  倒向放置波导阵列波束扫描方向图

    Figure  4.  Pattern of symmetrical slotted waveguide array

    图  5  三种阵列波束扫描时的S11

    Figure  5.  S11 with different beam scanning angle

    图  6  加载隔离栅波导缝隙阵

    Figure  6.  Slotted waveguide array with isolation barrier

    图  7  缝隙等效电导随阵列扫描角的变化

    Figure  7.  Equivalent conductance with beam scanning

    图  8  天线辐射阵面示意图

    Figure  8.  Schematic diagram of antenna array radiation surface

    图  9  最大辐射方向上交叉极化

    Figure  9.  Cross polarization in the direction of maximum radiation

    图  10  H面波束扫描

    Figure  10.  H-plane beam scanning pattern

    图  11  线阵S11随波束扫描变化

    Figure  11.  S11 with different beam scanning angle

    图  12  阵列扫描角为0°三维方向图

    Figure  12.  Array pattern when scanning angle is 0

    图  13  阵列扫描角为0°三维方向图

    Figure  13.  Array pattern when scanning angle is 45

    图  14  单根缝隙波导电场分布

    Figure  14.  Electric field distribution of slot waveguide

    图  15  介质窗大气侧表面电场分布

    Figure  15.  Surface electric field distribution on the atmosphere side of the dielectric window

  • [1] Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 2nd ed. New York: Taylor & Francis, 2007.
    [2] Benford J. Space applications of high-power microwaves[J]. IEEE Transactions on Plasma Science, 2008, 36(3): 569-581. doi: 10.1109/TPS.2008.923760
    [3] Gaponov A V, Flyagin V A, Fix A S, et al. Some perspectives on the use of powerful gyrotrons for the electron-cyclotron plasma heating in large tokamaks[J]. International Journal of Infrared and Millimeter Waves, 1980, 1(3): 351-372. doi: 10.1007/BF01007321
    [4] Clunie D. The design, construction and testing of an experimental high power, short-pulse radar, strong microwave in plasmas[M]. Nizhny Novgorod: Novgorod University Press, 1997.
    [5] 秦洪才, 袁成卫, 宁辉, 等. 高功率平板波导螺旋阵列天线设计[J]. 强激光与粒子束, 2021, 33:023002. (Qin Hongcai, Yuan Chengwei, Ning Hui, et al. Design of high power helical array antenna fed from planar waveguide[J]. High Power Laser and Particle Beams, 2021, 33: 023002 doi: 10.11884/HPLPB202133.200252
    [6] 杨一明, 袁成卫, 钱宝良. 波导缝隙阵列天线高功率微波应用探索[J]. 强激光与粒子束, 2013, 25(10):2648-2652. (Yang Yiming, Yuan Chengwei, Qian Baoliang. Beam steering antenna for high power microwave application[J]. High Power Laser and Particle Beams, 2013, 25(10): 2648-2652 doi: 10.3788/HPLPB20132510.2648
    [7] 廖勇, 孟凡宝, 张现福, 等. L波段高功率波导缝隙阵设计与数值模拟[J]. 强激光与粒子束, 2016, 28:113003. (Liao Yong, Meng Fanbao, Zhang Xianfu, et al. Design and simulation of L-band high power microwave antenna based on rectangular waveguides with longitudinal shunt slots[J]. High Power Laser and Particle Beams, 2016, 28: 113003 doi: 10.11884/HPLPB201628.160069
    [8] 刘斌, 谷胜明, 孟明霞, 等. 一种Ka频段高效率圆极化宽角扫描波导缝隙相控阵天线[J]. 电子与信息学报, 2021, 43(6):1630-1636. (Liu Bin, Gu Shengming, Meng Mingxia, et al. A circularly polarized wide-scan waveguide slot phased array antenna with high efficiency for Ka band application[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1630-1636 doi: 10.11999/JEIT200392
    [9] 杨彦炯. K波段低副瓣波导缝隙驻波阵设计[J]. 现代导航, 2018, 9(4):287-290. (Yang Yanjiong. Design of K-band standing wave array waveguide slot antenna with low sidelobe[J]. Modern Navigation, 2018, 9(4): 287-290 doi: 10.3969/j.issn.1674-7976.2018.04.012
    [10] 林昌禄. 近代天线设计[M]. 北京: 人民邮电出版社, 1993

    Lin Changlu. Modern antenna design[M]. Beijing: Posts & Telecom Press, 1993
    [11] 钟顺时, 费桐秋, 孙玉林. 波导窄边缝隙阵天线的设计[J]. 西北电讯工程学院学报, 1976(1):165-184. (Zhong Shunshi, Fei Tongqiu, Sun Yulin. Design of narrow-side slot array antenna of waveguide[J]. Journal of Xidian University, 1976(1): 165-184
    [12] Collin R E. Antenna and radio wave propagation[M]. New York: McGraw-Hill, 1985.
    [13] Liao Yong, Meng Fanbao, Xu Gang, et al. Analysis of wide-angle scanning of HPM waveguide slot array antenna[J]. High Power Laser and Particle Beams, 2018, 30: 033002.
    [14] Katoch M, Abegaonkar M, Basu A, et al. Compact microstrip phase shifter for beam steering antenna[C]//IEEE Asia-Pacific Microwave Conference. 2016: 1-5.
    [15] 黄惠军, 常超, 侯青, 等. 真空条件下介质窗表面微波击穿实验[J]. 强激光与粒子束, 2010, 22(4):845-848. (Huang Huijun, Chang Chao, Hou Qing, et al. Experimental studies on dielectric surface breakdown at vacuum conditions under high-power microwave excitation[J]. High Power Laser and Particle Beams, 2010, 22(4): 845-848 doi: 10.3788/HPLPB20102204.0845
  • 加载中
图(15)
计量
  • 文章访问数:  1379
  • HTML全文浏览量:  597
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-22
  • 修回日期:  2021-09-04
  • 网络出版日期:  2021-09-15
  • 刊出日期:  2021-10-15

目录

    /

    返回文章
    返回