留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

边界形变混响室设计与性能评估

程二威 王平平 赵敏 孟萃

程二威, 王平平, 赵敏, 等. 边界形变混响室设计与性能评估[J]. 强激光与粒子束, 2021, 33: 123002. doi: 10.11884/HPLPB202133.210472
引用本文: 程二威, 王平平, 赵敏, 等. 边界形变混响室设计与性能评估[J]. 强激光与粒子束, 2021, 33: 123002. doi: 10.11884/HPLPB202133.210472
Cheng Erwei, Wang Pingping, Zhao Min, et al. Design and performance evaluation of boundary deformation reverberation chamber[J]. High Power Laser and Particle Beams, 2021, 33: 123002. doi: 10.11884/HPLPB202133.210472
Citation: Cheng Erwei, Wang Pingping, Zhao Min, et al. Design and performance evaluation of boundary deformation reverberation chamber[J]. High Power Laser and Particle Beams, 2021, 33: 123002. doi: 10.11884/HPLPB202133.210472

边界形变混响室设计与性能评估

doi: 10.11884/HPLPB202133.210472
基金项目: 国家自然科学基金项目(51677191)
详细信息
    作者简介:

    程二威,ew_cheng@163.com

  • 中图分类号: TN97

Design and performance evaluation of boundary deformation reverberation chamber

  • 摘要: 使用微扰理论分析了腔体形变对谐振频率漂移的影响规律,从理论上论证了边界形变混响室的可行性,计算得到了边界形变参数对混响室空间电场均匀性的影响规律;采用了一种由柔性屏蔽布作为腔体材料、步进电机控制腔体表面形变的边界形变混响室设计方法,并对研制的几何尺寸为2.5 m×1.8 m×1.5 m的混响室的内部电场统计特性进行了试验测试。结果表明:混响室内部电场服从Rician分布,且随频率升高与理论模型的一致性变好;当形变幅度达到400 mm时,腔体内部电场扰动比大于20 dB,空间电场标准偏差小于3 dB,满足电磁兼容对混响室平台均匀性的限制要求。
  • 图  1  边界形变数量对混响室空间电场统计均匀性的影响

    Figure  1.  Influence of the amount of boundary deformation on the statistical uniformity of the spatial electric field in the reverberation chamber

    图  2  形变幅度对混响室空间电场统计均匀性的影响

    Figure  2.  Influence of deformation amplitude on the statistical uniformity of the spatial electric field in the reverberation chamber

    图  3  柔性屏蔽布混响室

    Figure  3.  Reverberation chamber with flexible shielding cloth

    图  4  测试系统示意图

    Figure  4.  Diagram of the test system

    图  5  接收功率随时间变化关系

    Figure  5.  Relationship between received power and time

    图  6  混响室内电场概率分布函数

    Figure  6.  Probability distribution function of electric field in the reverberation chamber

    图  7  混响室内部空间电场统计均匀性

    Figure  7.  Statistical uniformity of the spatial electric field inside the reverberation chamber

    图  8  混响室内部空间电场均匀性偏差

    Figure  8.  Uniformity of the spatial electric field inside the reverberation chamber

  • [1] 王庆国, 程二威. 电波混响室理论与应用[M]. 北京: 国防工业出版社, 2013

    Wang Qingguo, Cheng Erwei. Theories and applications of electromagnetic reverberation chamber[M]. Beijing: National Defense Industry Press, 2013
    [2] IEC 61000-4-21, Electromagnetic compatibility (EMC)—Part 4-21: testing and measurement techniques-reverberation chamber test methods[S].
    [3] GB/T 17626.21-2014, 电磁兼容试验和测量技术混波室试验方法[S]

    (GB/T 17626.21-2014, Electromagnetic compatibility—testing and measurement techniques—reverberation chamber test methods[S]
    [4] Andrieu G. On the possible benefits of inserting metallic diffractors to improve low frequency performance of reverberation chambers[J]. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(1): 304-307. doi: 10.1109/TEMC.2020.3038990
    [5] Sorrentino A, Nunziata F, Cappa S, et al. A semi-reverberation chamber configuration to emulate second-order descriptors of real-life indoor wireless propagation channels[J]. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(1): 3-10. doi: 10.1109/TEMC.2020.3005770
    [6] Reis A, Sarrazin F, Richalot E, et al. Radar cross section pattern measurements in a mode-stirred reverberation chamber: theory and experiments[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(9): 5942-5952. doi: 10.1109/TAP.2021.3060581
    [7] 程二威, 陈亚洲, 刘卫东, 等. 无人机外壳屏蔽效能测试方法[J]. 强激光与粒子束, 2017, 29:113201. (Cheng Erwei, Chen Yazhou, Liu Weidong, et al. Test method for shielding effectiveness of unmanned aerial vehicle enclosure[J]. High Power Laser and Particle Beams, 2017, 29: 113201 doi: 10.11884/HPLPB201729.170208
    [8] 程二威, 刘逸飞. 频率搅拌混响室原理及应用[J]. 强激光与粒子束, 2015, 27:103202. (Cheng Erwei, Liu Yifei. Theory and application of frequency stirring reverberation chamber[J]. High Power Laser and Particle Beams, 2015, 27: 103202 doi: 10.11884/HPLPB201527.103202
    [9] 赵翔, 茹梦圆, 闫丽萍, 等. 电磁混响室搅拌方式研究综述[J]. 强激光与粒子束, 2020, 32:063001. (Zhao Xiang, Ru Mengyuan, Yan Liping, et al. A review of research on stirring methods of electromagnetic reverberation chamber[J]. High Power Laser and Particle Beams, 2020, 32: 063001 doi: 10.11884/HPLPB202032.200079
    [10] 潘晓东, 魏光辉, 万浩江, 等. 电子设备电磁辐射敏感度测试相关问题研究[J]. 强激光与粒子束, 2020, 32:073002. (Pan Xiaodong, Wei Guanghui, Wan Haojiang, et al. Research on several test issues of electromagnetic radiation susceptibility for electronic equipment[J]. High Power Laser and Particle Beams, 2020, 32: 073002 doi: 10.11884/HPLPB202032.200088
    [11] Leferink F, Boudenot J C, Van Etten W. Experimental results obtained in the vibrating intrinsic reverberation chamber[C]//IEEE International Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No. 00CH37016). Washington: IEEE, 2000: 639-644.
    [12] Kouveliotis N K, Trakadas P T, Capsalis C N. Examination of field uniformity in vibrating intrinsic reverberation chamber using the FDTD method[J]. Electronics Letters, 2002, 38(3): 109-110. doi: 10.1049/el:20020076
    [13] Serra R, Leferink F B J. Optimizing the stirring strategy for the vibrating intrinsic reverberation chamber[C]//9th International Symposium on EMC and 20th International Wroclaw Symposium on Electromagnetic Compatibility. Wroclaw: Oficyna Wydawnicza Politechniki Wroclawskiej, 2010: 457-462.
    [14] Hara M, Takahashi Y, Vogt-Ardatjew R, et al. Statistical analysis for reverberation chamber with flexible shaking walls with various amplitudes[C]//Proceedings of the 2018 International Symposium on Electromagnetic Compatibility. Amsterdam: IEEE, 2018: 694-698.
    [15] Skrzypczynski J. Dual vibrating intrinsic reverberation chamber used for shielding effectiveness measurements[C]//Proceedings of the 10th International Symposium on Electromagnetic Compatibility. York: IEEE, 2011: 133-136.
    [16] Hill D A. Electromagnetic fields in cavities: Deterministic and statistical theories[M]. New Jersey: Wiley-IEEE Press, 2009.
  • 加载中
图(8)
计量
  • 文章访问数:  813
  • HTML全文浏览量:  282
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-08
  • 修回日期:  2021-12-05
  • 录用日期:  2021-12-06
  • 网络出版日期:  2021-12-08
  • 刊出日期:  2021-12-15

目录

    /

    返回文章
    返回