留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高置信度强电磁脉冲环境测试技术研究进展与展望

秦风 高原 马弘舸

秦风, 高原, 马弘舸. 高置信度强电磁脉冲环境测试技术研究进展与展望[J]. 强激光与粒子束, 2021, 33: 123001. doi: 10.11884/HPLPB202133.210482
引用本文: 秦风, 高原, 马弘舸. 高置信度强电磁脉冲环境测试技术研究进展与展望[J]. 强激光与粒子束, 2021, 33: 123001. doi: 10.11884/HPLPB202133.210482
Qin Feng, Gao Yuan, Ma Hongge. Progress and prospect of high-confidence measurement technology for high-intensity electromagnetic pulse[J]. High Power Laser and Particle Beams, 2021, 33: 123001. doi: 10.11884/HPLPB202133.210482
Citation: Qin Feng, Gao Yuan, Ma Hongge. Progress and prospect of high-confidence measurement technology for high-intensity electromagnetic pulse[J]. High Power Laser and Particle Beams, 2021, 33: 123001. doi: 10.11884/HPLPB202133.210482

高置信度强电磁脉冲环境测试技术研究进展与展望

doi: 10.11884/HPLPB202133.210482
基金项目: 中国工程物理研究院复杂电磁环境科学与技术重点实验室基金项目(FZSYS-02);快速扶持项目(80909010302)
详细信息
    作者简介:

    秦 风,fq_soul2000@163.com

    通讯作者:

    高 原,18142550916@163.com

  • 中图分类号: TM937;TN98

Progress and prospect of high-confidence measurement technology for high-intensity electromagnetic pulse

  • 摘要: 高置信度强电磁脉冲环境测试技术,作为强电磁脉冲研究领域的重要基础共性技术,近年来受到了国内外科研人员的高度关注。主要从天线(传感器)、链路信号传输畸变补偿等方面系统回顾当前高置信度强电磁脉冲环境测试技术研究进展,并结合强电磁脉冲环境生成技术、效应与防护研究发展趋势,阐述强电磁脉冲环境测试面临的挑战,并对高置信度强电磁脉冲环境测试技术发展进行初浅展望,以期为强电磁脉冲技术领域科研人员提供借鉴、参考。
  • 图  1  D-dot传感器主要结构形式

    Figure  1.  Main D-dot sensors

    图  2  ACD D-dot传感器振子形状

    Figure  2.  Shape of the vibrator of ACD D-dot sensor

    图  3  Montena公司生产的D-dot传感器

    Figure  3.  D-dot sensors of Montena

    图  4  典型一维有源电光调制脉冲电场传感器

    Figure  4.  Typical 1D electro-optically modulated pulsed electric field sensor

    图  5  Montena公司研制的基于D-dot传感器的一维有源电光调制脉冲电场测试系统

    Figure  5.  1D electro-optically modulated pulsed electric field measurement system based on D-dot sensor of Montena

    图  6  典型三维有源电光调制脉冲电场传感器示意图

    Figure  6.  Schematic of a typical 3D electro-optically modulated pulsed electric field sensor

    图  7  集成光学电场传感器结构示意图

    Figure  7.  Schematic of the integrated optical electric field sensor structure

    图  8  Srico公司集成光学电场传感器

    Figure  8.  Integrated optical electric field sensor system of Srico

    图  9  Seikoh Giken公司推出的三维集成光学电场传感器系统

    Figure  9.  3D integrated optical electric field sensor system of Seikoh Giken

    图  10  同轴电缆均衡补偿网络实物图

    图  11  射频检波器典型输入输出关系

    Figure  11.  Typical input-output relationship of the RF detector

  • [1] 秦风, 蔡金良, 曹学军, 等. 车辆强电磁脉冲环境适应性研究[J]. 强激光与粒子束, 2019, 31:103203. (Qin Feng, Cai Jinliang, Cao Xuejun, et al. Investigation on the adaptability of vehicle in high-intensity electromagnetic pulse environment[J]. High Power Laser and Particle Beams, 2019, 31: 103203 doi: 10.11884/HPLPB201931.190233
    [2] 李名杰, 刘进. 电子装备面临的强电磁脉冲环境分析[J]. 装备环境工程, 2012, 9(2):69-73. (Li Mingjie, Liu Jin. Environmental analysis of high power EMP on electronic equipment[J]. Equipment Environmental Engineering, 2012, 9(2): 69-73 doi: 10.3969/j.issn.1672-9242.2012.02.017
    [3] 刘勇波, 樊祥, 韩涛. 高功率微波作用机理及影响条件分析[J]. 电子对抗技术, 2003, 18(4):41-45. (Liu Yongbo, Fan Xiang, Han Tao. Analysis of the effect mechanism of high-power microwave and transmission[J]. Electronic Warfare Technology, 2003, 18(4): 41-45
    [4] 张荣荣, 吴小松, 李金蓉. 高功率微波电磁脉冲敏感阈值试验方法研究[J]. 信息通信, 2020(9):86-88. (Zhang Rongrong, Wu Xiaosong, Li Jinrong. Study of the sensitivity threshold test method of the high power microwave electromagnetic pulse[J]. Information & Communications, 2020(9): 86-88
    [5] 阮存军, 刘濮鲲, 高怀林. 高功率微波定向能车辆阻停系统的技术发展及应用[J]. 微波学报, 2010, 26(s1):712-716. (Yuan Cunjun, Liu Pukun, Gao Huailin. The development and applications of directed energy vehicle stopper system with high power microwave[J]. Journal of Microwaves, 2010, 26(s1): 712-716
    [6] 王聪敏, 张博. 高功率微波对电子设备的影响分析[J]. 航天电子对抗, 2007, 23(5):26-28. (Wang Congmin, Zhang Bo. The effect of HPM to electric equipment[J]. Aerospace Electronic Warfare, 2007, 23(5): 26-28 doi: 10.3969/j.issn.1673-2421.2007.05.009
    [7] 张广星. 双指数纳秒脉冲场测试系统研究[D]. 南京: 东南大学, 2016

    Zhang Guangxing. Research on test system of the double-exponential nanosecond pulsed E-field[D]. Nanjing: Southeast University, 2016
    [8] 张龙, 魏光辉, 潘晓东, 等. 脉冲电场测试系统标定方法[J]. 高电压技术, 2014, 40(3):930-936. (Zhang Long, Wei Guanghui, Pan Xiaodong, et al. Calibration method of pulse electric field test system[J]. High Voltage Engineering, 2014, 40(3): 930-936
    [9] 王哲, 贺宇, 武丹丹, 等. 雷达接收机高功率微波效应试验研究[J]. 通信技术, 2019, 52(1):56-61. (Wang Zhe, He Yu, Wu Dandan, et al. Experimental exploration on high-power microwave effect of radar receiver[J]. Communications Technology, 2019, 52(1): 56-61 doi: 10.3969/j.issn.1002-0802.2019.01.010
    [10] 杨杰, 李跃波, 闫民华, 等. L波段高功率微波对计算机的损伤效应试验研究[J]. 微波学报, 2018, 34(2):80-85. (Yang Jie, Li Yuebo, Yan Minhua, et al. Experimental research on damage effects of L-band high power microwave to computer equipments[J]. Journal of Microwaves, 2018, 34(2): 80-85
    [11] 李超, 汤仕平, 万海军, 等. 美军电磁环境效应(E3)实验室建设浅析[J]. 装备环境工程, 2011, 8(6):76-79. (Li Chao, Tang Shiping, Wan Haijun, et al. Analysis of US electromagnetic environmental effects (E3) laboratory construction[J]. Equipment Environmental Engineering, 2011, 8(6): 76-79 doi: 10.3969/j.issn.1672-9242.2011.06.019
    [12] 李金平, 孟凡萍, 易翔翔. 美军电磁环境效应试验规程分析[J]. 安全与电磁兼容, 2016(1):77-80. (Li Jinping, Meng Fanping, Yi Xiangxiang. Analysis on to the test operation procedure of electromagnetic environmental effects in U. S. Army[J]. Safety & EMC, 2016(1): 77-80
    [13] Aurand J F. Measurements of transient electromagnetic propagation through concrete and sand[R]. Albuquerque: Sandia National Lab. , 1996.
    [14] Bigelow W S, Farr E G, Bowen L H, et al. Design and characterization of a lens TEM horn[M]//Sabath F, Mokole E L, Schenk U, et al. Ultra-Wideband, Short-Pulse Electromagnetics 7. New York: Springer, 2007.
    [15] Bigelow W S, Farr E G. Impulse propagation measurements of the dielectric properties of several polymer resins[R]. Measurement Notes, Note 55, 1999.
    [16] Masterson K D, Kanda M. Broadband, photonic electric field sensors for EMP and HPM applications[C]//Proceedings of the Fifth National Conference on High Power Microwave Technology (DoD). 1990.
    [17] 舒挺, 王勇, 李继健, 等. 高功率微波的远场测量[J]. 强激光与粒子束, 2003, 15(5):485-488. (Shu Ting, Wang Yong, Li Jijian, et al. Measurement of high power microwaves in the far-field zones[J]. High Power Laser and Particle Beams, 2003, 15(5): 485-488
    [18] 张黎军, 陈昌华, 滕雁, 等. 高功率微波辐射场远场测量方法[J]. 强激光与粒子束, 2016, 28:053002. (Zhang Lijun, Chen Changhua, Teng Yan, et al. Farfield measurement method of high power microwave in radiation field[J]. High Power Laser and Particle Beams, 2016, 28: 053002 doi: 10.11884/HPLPB201628.053002
    [19] 徐晓英, 朱长青, 刘尚合. 超宽带脉冲电场测试技术研究[J]. 物理, 2005, 34(8):603-607. (Xu Xiaoying, Zhu Changqing, Liu Shanghe. Measurement of ultra-wide-band pulsed electrical fields[J]. Physics, 2005, 34(8): 603-607 doi: 10.3321/j.issn:0379-4148.2005.08.012
    [20] 马良, 吴伟, 程引会, 等. 基于原始波形测量的脉冲电场探测器[J]. 强激光与粒子束, 2010, 22(11):2763-2768. (Ma Liang, Wu Wei, Cheng Yinhui, et al. Pulsed electric field sensor based on original waveform measurement[J]. High Power Laser and Particle Beams, 2010, 22(11): 2763-2768 doi: 10.3788/HPLPB20102211.2763
    [21] 赵墨, 马良, 吴伟, 等. 差分型脉冲电场测量系统的研制[J]. 核电子学与探测技术, 2012, 32(10):1148-1152. (Zhao Mo, Ma Liang, Wu Wei, et al. The develop of pulsed E-field sensor based on differential measurement[J]. Nuclear Electronics & Detection Technology, 2012, 32(10): 1148-1152 doi: 10.3969/j.issn.0258-0934.2012.10.009
    [22] 王赟, 陈永光, 王庆国, 等. 辐射式核电磁脉冲模拟器场均匀区域测试方法[J]. 微波学报, 2016, 32(s2):569-574. (Wang Yun, Chen Yongguang, Wang Qingguo, et al. Measurement method of the uniform field area for the radiation type of nuclear electromagnetic pulse simulator[J]. Journal of Microwaves, 2016, 32(s2): 569-574
    [23] GJB 8221-2014, 窄脉冲高功率微波外场功率测量方法[S]

    (GJB 8221-2014, The method of power measurement for short high power microwave pulse of outdoor range[S]
    [24] GJB 9257-2017, 高功率微波效应试验方法窄带高功率微波辐照法[S]

    (GJB 9257-2017, Test method for high power microwave effects – Narrow band high power microwave radiation method[S]
    [25] GJB 9382-2018, 窄谱高功率微波功率测量方法[S]

    (GJB 9382-2018, The method of power measurement for narrow band high power microwave[S]
    [26] GJB 7052-2010, 窄脉冲高功率微波频率和频谱特性测量方法[S]

    (GJB 7052-2010, Methods of measure the frequency and spectrum characteristics of short high power microwave pulse[S]
    [27] GJB 8218-2204, 高功率超宽谱脉冲辐射场测量方法[S]

    (GJB 8218-2204, Measure method for the high power ultra wide band pulse radiation field[S]
    [28] 刘英君, 晏峰, 景洪, 等. 高功率微波辐射场功率密度测量不确定度分析方法[J]. 电波科学学报, 2017, 32(4):398-402. (Liu Yingjun, Yan Feng, Jing Hong, et al. Measurement uncertainty on power density of high power microwave radiation[J]. Chinese Journal of Radio Science, 2017, 32(4): 398-402
    [29] 蒋廷勇, 高林, 刘小龙, 等. 抑制地面反射影响的高功率微波辐射场测量方法[J]. 强激光与粒子束, 2015, 27:123007. (Jiang Tingyong, Gao Lin, Liu Xiaolong, et al. Minimizing the impact of ground reflection on high power microwave E-field measurement[J]. High Power Laser and Particle Beams, 2015, 27: 123007 doi: 10.11884/HPLPB201527.123007
    [30] 严雪飞, 朱长青, 王佳. 3维脉冲电场测试中扰动电场效应分析[J]. 高电压技术, 2019, 45(2):658-664. (Yan Xuefei, Zhu Changqing, Wang Jia. Analysis of the E-filed distortion in three-dimensional pulsed electric field test[J]. High Voltage Engineering, 2019, 45(2): 658-664
    [31] 高原, 秦风, 吴双. 一种强电磁脉冲辐射场均匀性校准测试装置[J]. 强激光与粒子束, 2019, 31:063206. (Gao Yuan, Qin Feng, Wu Shuang. Device for uniformity calibration of high-intensity electromagnetic pulse radiation[J]. High Power Laser and Particle Beams, 2019, 31: 063206 doi: 10.11884/HPLPB201931.190053
    [32] 刘顺坤, 聂鑫, 陈向跃, 等. 电磁脉冲辐射场试验中的光纤传输测量系统[J]. 核电子学与探测技术, 2010, 30(3):370-373. (Liu Shunkun, Nie Xin, Chen Xiangyue, et al. Electromagnetic pulse measurement system based on optical fiber transmission under radiated-wave test[J]. Nuclear Electronics & Detection Technology, 2010, 30(3): 370-373 doi: 10.3969/j.issn.0258-0934.2010.03.017
    [33] 岳震震. 宽频带加脊喇叭天线设计[D]. 西安: 西安电子科技大学, 2017

    Yue Zhenzhen. Design of a broadband double-ridged horn antenna[D]. Xi’an: Xidian University, 2017
    [34] 张晓明. 瞬态电场测试传感器的研制[D]. 北京: 清华大学, 2011

    Zhang Xiaoming. Development of a transient electric field sensor[D]. Beijing: Tsinghua University, 2011
    [35] 卫兵, 方东凡, 卿燕玲, 等. 亚纳秒脉冲高电压测量探头[J]. 强激光与粒子束, 2012, 24(6):1497-1501. (Wei Bing, Fang Dongfan, Qing Yanling, et al. D-dot monitor for sub-nanosecond high voltage pulse measurement[J]. High Power Laser and Particle Beams, 2012, 24(6): 1497-1501 doi: 10.3788/HPLPB20122406.1497
    [36] 王悦. 瞬态电场时域测试传感器的研制与测试[D]. 南京: 东南大学, 2019

    Wang Yue. Development and testing of transient electric field time domain test sensor[D]. Nanjing: Southeast University, 2019
    [37] Baum C E. An equivalent-charge method for defining geometries of dipole antennas[R]. Sensor and Simulation Notes, Note 72, 1969.
    [38] Sower G D. Optimization of the asymptotic conical dipole EMP sensors[R]. Sensor and Simulation Notes, Note 295, 1986.
    [39] 陈锦, 刘小龙, 燕有杰, 等. 小型短电磁脉冲传感器[J]. 强激光与粒子束, 2012, 24(12):2797-2801. (Chen Jin, Liu Xiaolong, Yan Youjie, et al. Compact short electromagenetic pulse sensor[J]. High Power Laser and Particle Beams, 2012, 24(12): 2797-2801 doi: 10.3788/HPLPB20122412.2797
    [40] 王启武, 李炎新, 石立华. 纳秒电磁脉冲测量用D-dot探头设计及实验[J]. 强激光与粒子束, 2015, 27:115004. (Wang Qiwu, Li Yanxin, Shi Lihua. Design and experimental research of D-dot probe for nuclear electromagnetic pulse measurement[J]. High Power Laser and Particle Beams, 2015, 27: 115004 doi: 10.11884/HPLPB201527.115004
    [41] 齐路, 张国钢, 刘竞存, 等. 电磁脉冲D-dot电场传感器的设计与优化[J]. 高压电器, 2018, 54(7):237-241,247. (Qi Lu, Zhang Guogang, Liu Jingcun, et al. Design and optimization of D-dot E-field sensor for electromagnetic pulse detection[J]. High Voltage Apparatus, 2018, 54(7): 237-241,247
    [42] 凡守涛, 尹应增, 王耀召, 等. 用于WLAN的多频印刷单极子天线[C]//2009年全国天线年会论文集. 2009: 129-132

    Fan Shoutao, Yin Yingzeng, Wang Yaozhao, et al. Multi-band printed monopole antenna for WLAN applications[C]//Proceedings of 2009 National Conference Antenna. 2009: 129-132
    [43] 王雷. 一种多频带印刷单极子天线的设计[J]. 电子科技, 2014, 27(4):82-84. (Wang Lei. Design of a multi-band printed monopole antenna[J]. Electronic Science and Technology, 2014, 27(4): 82-84 doi: 10.3969/j.issn.1007-7820.2014.04.024
    [44] 朱长青. 脉冲电场微型传感探头的研制[J]. 高电压技术, 2009, 35(8):1940-1945. (Zhu Changqing. Development of a mini-probe for testing pulsed E-field[J]. High Voltage Engineering, 2009, 35(8): 1940-1945
    [45] 张晓明, 孟萃, 魏明, 等. 宽频带电磁脉冲电场传感器的研制与测试[J]. 核技术, 2011, 34(4):299-303. (Zhang Xiaoming, Meng Cui, Wei Ming, et al. Development of a wideband transient electric field sensor[J]. Nuclear Techniques, 2011, 34(4): 299-303
    [46] 刘卫东, 刘尚合, 魏明, 等. 光纤传输式瞬态脉冲电场传感器分析与设计[J]. 微波学报, 2011, 27(1):78-82. (Liu Weidong, Liu Shanghe, Wei Ming, et al. Characteristics analysis and design of fiber-optical E-field sensor for transient electromagnetic field measurement[J]. Journal of Microwaves, 2011, 27(1): 78-82
    [47] 王阳阳, 毕军建, 陈翔. 高功率瞬态电场传感器的设计与分析[J]. 高压电器, 2013, 49(1):24-28. (Wang Yangyang, Bi Junjian, Chen Xiang. Design and analysis of sensor for high power transient electric field[J]. High Voltage Apparatus, 2013, 49(1): 24-28
    [48] Zhang G G, Li W F, Qi L, et al. Design of wideband GHz electric field sensor integrated with optical fiber transmission link for electromagnetic pulse signal measurement[J]. Sensors, 2018, 18: 3167. doi: 10.3390/s18093167
    [49] 徐远哲, 高成, 李炎新, 等. 平行板型三维脉冲电场传感器的研制[J]. 高电压技术, 2008, 34(3):471-475. (Xu Yuanzhe, Gao Cheng, Li Yanxin, et al. Development of three-dimensional wideband sensor for pulsed electric field measurement[J]. High Voltage Engineering, 2008, 34(3): 471-475
    [50] 相辉, 谢彦召, 翟爱斌. 瞬态三维电场传感器的研制[J]. 抗核加固, 2011, 28(2):33-38. (Xiang Hui, Xie Yanzhao, Zhai Aibin. Design of three-dimensional transient electric field sensor[J]. Kang He Jia Gu, 2011, 28(2): 33-38
    [51] 孔旭, 谢彦召. 基于光纤技术的电磁脉冲3维电、磁场测量系统[J]. 高电压技术, 2015, 41(1):339-345. (Kong Xu, Xie Yanzhao. Electric field and magnetic field measuring system for EMP measurement based on fiber technology[J]. High Voltage Engineering, 2015, 41(1): 339-345
    [52] Kanda M, Driver L D. An isotropic electric-field probe with tapered resistive dipoles for broad-band use, 100kHz to 18GHz[J]. IEEE Transactions on Microwave Theory and Techniques, 1987, 35(2): 124-130. doi: 10.1109/TMTT.1987.1133614
    [53] Randa J, Kanda M, Orr R D. Resistively-tapered-dipole electric-field probes up to 40 GHz[C]//Proceedings of the IEEE 1991 International Symposium on Electromagnetic Compatibility. Cherry Hill, 1991: 265-266.
    [54] Harasztosi Z. High frequency E-field probe[C]//Proceedings of the 24th International Spring Seminar on Electronics Technology. Concurrent Engineering in Electronic Packaging. ISSE 2001. Conference Proceedings (Cat. No. 01EX492). Calimanesti-Caciulata, 2001: 172-174.
    [55] Bulmer C H, Burns W K, Moeller R P. Linear interferometric waveguide modulator for electromagnetic-field detection[J]. Optics Letters, 1980, 5(5): 176-178. doi: 10.1364/OL.5.000176
    [56] Meier T, Kostrzewa C, Petermann K, et al. Integrated optical E-field probes with segmented modulator electrodes[J]. Journal of Lightwave Technology, 1994, 12(8): 1497-1503. doi: 10.1109/50.317540
    [57] 谢彦召, 焦杰, 郑振兴, 等. 宽频带电光式脉冲电场测量系统的研制及应用[J]. 核电子学与探测技术, 2000, 20(1):43-46. (Xie Yanzhao, Jiao Jie, Zheng Zhenxing, et al. Development and application of wide-band electro-optic measurement system for pulsed E-field[J]. Nuclear Electronics & Detection Technology, 2000, 20(1): 43-46 doi: 10.3969/j.issn.0258-0934.2000.01.012
    [58] Zeng R, Chen W Y, He J L, et al. Novel integrated electro-optic sensor for intensive transient electric field measurement[C]//Proceedings of the IEEE International Symposium on Electromagnetic Compatibility 2006. 2006.
    [59] Sun B, Chen F S, Chen K X, et al. Integrated optical electric field sensor from 10 kHz to 18 GHz[J]. IEEE Photonics Technology Letters, 2012, 24(13): 1106-1108. doi: 10.1109/LPT.2012.2195780
    [60] Tajima K, Kobayashi R, kuwabara N, et al. Development of optical isotropic E-field sensor operating more than 10 GHz using Mach-Zehnder interferometers[J]. IEICE Transactions on Electronics, 2002, E85-C(4): 961-968.
    [61] 孙豹. 宽带集成光波导射频全向电场传感器的研究[D]. 成都: 电子科技大学, 2006

    Sun Bao. Study of broadband integrated optical waveguide RF omnidirectional electric field sensor[D]. Chengdu: University of Electronic Science and Technology of China, 2006
    [62] 王亚平, 蔡勖. ALICE实验中同轴电缆的信号传输特性的研究[J]. 核电子学与探测技术, 2006, 26(2):195-198. (Wang Yaping, Cai Xu. Study of signal transmission properties of a coaxial cable in ALICE experiment[J]. Nuclear Electronics & Detection Technology, 2006, 26(2): 195-198 doi: 10.3969/j.issn.0258-0934.2006.02.019
    [63] Xiao P, Du P A, Zhang B X. An analytical method for radiated electromagnetic and shielding effectiveness of braided coaxial cable[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(1): 121-127. doi: 10.1109/TEMC.2018.2814629
    [64] 王得宇. 同轴电缆特性分析和测量研究[J]. 计算机工程与应用, 2012, 48(s2):467-470. (Wang Deyu. Coaxial line characteristic analyse and measure[J]. Computer Engineering and Applications, 2012, 48(s2): 467-470
    [65] 陈克难, 刘文红. 信号波形在同轴电缆中的传输[J]. 仪器仪表学报, 2004, 25(s4):502-505,515. (Chen Kenan, Liu Wenhong. Transmission of signal wave through coaxial-cable[J]. Chinese Journal of Scientific Instrument, 2004, 25(s4): 502-505,515
    [66] Ekstrom M P. Baseband distortion equalization in the transmission of pulse information[J]. IEEE Transactions on Instrumentation and Measurement, 1972, 21(4): 510-515. doi: 10.1109/TIM.1972.4314077
    [67] 黄豹. 新的高频同轴电缆补偿原理[J]. 核电子学与探测技术, 1985, 5(4):193-198. (Huang Bao. New principle of high frequency coaxial cable equalization[J]. Nuclear Electronics & Detection Technology, 1985, 5(4): 193-198
    [68] 李宪优, 田耕, 蒲明辉, 等. 同轴电缆的远距离传输带宽扩展技术[J]. 宇航计测技术, 2004, 24(3):40-43. (Li Xianyou, Tian Geng, Pu Minghui, et al. The bandwidth expanding technology of long coax cable[J]. Journal of Astronautic Metrology and Measurement, 2004, 24(3): 40-43 doi: 10.3969/j.issn.1000-7202.2004.03.012
    [69] 李宪优, 田耕, 于丽娟, 等. 强光一号加速器测量电缆补偿技术[J]. 强激光与粒子束, 2009, 21(3):473-476. (Li Xianyou, Tian Geng, Yu Lijuan, et al. Bandwidth compensation technology of QG-I accelerator’s cables[J]. High Power Laser and Particle Beams, 2009, 21(3): 473-476
    [70] Peterson R L. Frequency domain compensation of coaxial cables for best time domain response[R]. Livermore: Lawrence Radiation Lab. , 1966.
    [71] 渠红光, 李宪优, 田耕, 等. 基于衰减特性的电缆传输畸变软件补偿[J]. 装备学院学报, 2010, 21(2):87-90. (Qu Hongguang, Li Xianyou, Tian Geng, et al. Attenuation compensation by software based on the character of transfers of the cable[J]. Journal of Equipment Academy, 2010, 21(2): 87-90 doi: 10.3783/j.issn.1673-0127.2010.02.020
    [72] 付佳斌, 卿燕玲, 卫兵, 等. 同轴电缆测量纳秒脉冲信号衰减的数字补偿[J]. 强激光与粒子束, 2011, 23(10):2826-2830. (Fu Jiabin, Qing Yanling, Wei Bing, et al. Numerical compensation for coaxial cable signal degradation[J]. High Power Laser and Particle Beams, 2011, 23(10): 2826-2830 doi: 10.3788/HPLPB20112310.2826
    [73] Sarkar T K, Tseng F I, Rao S M, et al. Deconvolution of impulse response from time-limited input and output: theory and experiment[J]. IEEE Transactions on Instrumentation and Measurement, 1985, IM-34(4): 541-546. doi: 10.1109/TIM.1985.4315400
    [74] Boyer W B. Computer compensation for cable signal degradations[R]. Albuquerque: Sandia National Labs. , 1987.
    [75] 王明仙, 王力群, 孙一兵. 信号在电缆中传输失真的补偿[J]. 吉林工业大学学报, 1993, 23(4):52-56. (Wang Mingxian, Wang Liqun, Sun Yibing. Compensation on distortion of signal tested in transmission cable[J]. Journal of Jilin University of Technology, 1993, 23(4): 52-56
    [76] 张维旺, 陈炜峰. 基于LabVIEW和Matlab的纳秒脉冲测量信号补偿研究[J]. 电子测量技术, 2008, 31(7):91-93,96. (Zhang Weiwang, Chen Weifeng. Nanosecond pulse regulating based on LabVIEW and Matlab[J]. Electronic Measurement Technology, 2008, 31(7): 91-93,96 doi: 10.3969/j.issn.1002-7300.2008.07.025
    [77] 秦风, 高原, 吴双. 基于改进贝叶斯非负Tikhonov正则化方法的同轴电缆信号传输畸变补偿研究[J]. 电子与信息学报, 2021, 43(8):2199-2206. (Qin Feng, Gao Yuan, Wu Shuang. Signal compensation of coaxial cable based on modified non-negative Tikhonov regularization method within Bayesian inference[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2199-2206 doi: 10.11999/JEIT210068
    [78] Gao Y, Jiang Y S, Qin F, et al. Optimal choice of signal compensation in coaxial cable: modified non-negative Tikhonov regularization method within Bayesian frame[J]. Measurement, 2021, 174: 109072. doi: 10.1016/j.measurement.2021.109072
    [79] 刘丹, 尹应增, 史小卫. 微波二极管检波特性分析[J]. 西安电子科技大学学报(自然科学版), 2003, 30(6):810-813,818. (Liu Dan, Yin Yingzeng, Shi Xiaowei. An analysis of the detection behavior of microwave diode detectors[J]. Journal of Xidian University, 2003, 30(6): 810-813,818
    [80] 王合英, 孙文博, 张慧云, 等. 微波晶体检波二极管检波特性的分段定标[J]. 大学物理实验, 2008, 21(1):1-3. (Wang Heying, Sun Wenbo, Zhang Huiyun, et al. Subsection calibration method for detection parameters of microwave crystal diode detector[J]. Physical Experiment of College, 2008, 21(1): 1-3 doi: 10.3969/j.issn.1007-2934.2008.01.001
    [81] 张治强, 郝文析, 王宏军. 温度对微波检波器性能影响实验研究[J]. 现代应用物理, 2014, 5(1):36-38. (Zhang Zhiqiang, Hao Wenxi, Wang Hongjun. Effects of temperature on performance of microwave detectors[J]. Modern Applied Physics, 2014, 5(1): 36-38 doi: 10.3969/j.issn.2095-6223.2014.01.007
    [82] Shashkin V I, Vaks V L, Danil'tsev V M, et al. Microwave detectors based on low-barrier planar Schottky diodes and their characteristics[J]. Radiophysics and Quantum Electronics, 2005, 48(6): 485-490. doi: 10.1007/s11141-005-0092-8
    [83] 常亮. 二极管包络检波电路原理及失真探究[J]. 电子测试, 2013(17):34-36. (Chang Liang. Study on principle and distortion of diode envelope detection circuit[J]. Electronic Test, 2013(17): 34-36
    [84] 高美蓉. 二极管峰值包络检波器特性研究[J]. 国外电子测量技术, 2018, 37(11):37-41. (Gao Meirong. Study on the characteristics of diode peak envelope detector[J]. Foreign Electronic Measurement Technology, 2018, 37(11): 37-41
    [85] 徐达旺, 李志亮. 二极管式微波功率检波器的温度补偿技术[J]. 电子测量技术, 2006, 29(6):172-174. (Xu Dawang, Li Zhiliang. Temperature compensation technique for diode microwave power detector[J]. Electronic Measurement Technology, 2006, 29(6): 172-174 doi: 10.3969/j.issn.1002-7300.2006.06.063
    [86] Bera S C, Singh R V, Garg V K. Temperature behaviour and compensation of Schottky barrier diode[J]. International Journal of Electronics, 2008, 95(5): 457-465. doi: 10.1080/00207210801976867
    [87] 张治平. 宽带集成检波器频率响应的补偿及阻抗匹配[J]. 固体电子学研究与进展, 1983, 3(1):59-63. (Zhang Zhiping. The frequency compensation and impedance match for broadband integrated detectors[J]. Research & Progress of SSE, 1983, 3(1): 59-63
    [88] 李金山, 徐达旺, 李强. 一种基于二极管检波器微波功率测量方法研究[J]. 仪器仪表学报, 2010, 31(8):304-307. (Li Jinshan, Xu Dawang, Li Qiang. Study on microwave power measurement based on diode detector[J]. Chinese Journal of Scientific Instrument, 2010, 31(8): 304-307
    [89] 王建忠, 魏翔文. 宽带高灵敏度检波器检测技术研究[R]. 中国国防科学技术报告, GF-A0094409G

    Wang Jianzhong, Wei Xiangwen. Research on measurement technology of detectors with wide frequency range and high voltage sensitivity[R]. China Defense Science and Technology Report, GF-A0094409G
    [90] 徐福锴. 宽带连续波和高重频无引导场高功率微波源的理论探索[D]. 北京: 中国工程物理研究院, 2003

    Xu Fukai. Study on wide-band C-W & repeatedly operating HPM source without guiding field[D]. Beijing: China Academy of Engineering Physics, 2003
    [91] 江伟华. 基于固态器件的高重频脉冲功率技术[J]. 强激光与粒子束, 2010, 22(3):561-564. (Jiang Weihua. High repetition-rate pulsed power generation using solid-state switches[J]. High Power Laser and Particle Beams, 2010, 22(3): 561-564 doi: 10.3788/HPLPB20102203.0561
    [92] Ginzburg N S, Rozental R M, Sergeev A S. Dual band operation of the relativistic BWO[C]//Proceedings of the 4th IEEE International Conference on Vacuum Electronics, 2003. New York: IEEE, 2003: 181-182.
    [93] 陈代兵, 孟凡宝, 王冬, 等. L波段双频磁绝缘线振荡器的设计与粒子模拟[J]. 强激光与粒子束, 2009, 21(3):429-433. (Chen Daibing, Meng Fanbao, Wang Dong, et al. Design and particle simulation of L-band bifrequency magnetically insulated transmission line oscillator[J]. High Power Laser and Particle Beams, 2009, 21(3): 429-433
    [94] 宋刚永, 蒙林, 于新华, 等. 双频相对论返波振荡器的数值模拟[J]. 强激光与粒子束, 2009, 21(1):103-107. (Song Gangyong, Meng Lin, Yu Xinhua, et al. Numerical simulation of dual-frequency relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2009, 21(1): 103-107
    [95] 张建国, 蒙林, 宋刚永, 等. X波段多频相对论返波振荡器的粒子模拟[J]. 强激光与粒子束, 2010, 22(6):1327-1330. (Zhang Jianguo, Meng Lin, Song Gangyong, et al. Particle simulation of X-band multi-frequency relativistic backward-wave oscillator[J]. High Power Laser and Particle Beams, 2010, 22(6): 1327-1330 doi: 10.3788/HPLPB20102206.1327
    [96] 王挺, 钱宝良, 张建德. 双波段相对论返波振荡器模拟研究[J]. 强激光与粒子束, 2009, 21(4):499-502. (Wang Ting, Qian Baoliang, Zhang Jiande. Particle simulation of dual-band relativistic backward-wave oscillator[J]. High Power Laser and Particle Beams, 2009, 21(4): 499-502
    [97] 陈代兵, 王冬, 范植开, 等. 多频磁绝缘线振荡器的粒子模拟[J]. 强激光与粒子束, 2007, 19(10):1702-1708. (Chen Daibing, Wang Dong, Fan Zhikai, et al. Particle simulation of multi-frequency magnetically insulated transmission line oscillator[J]. High Power Laser and Particle Beams, 2007, 19(10): 1702-1708
    [98] 杨会军, 李文魁, 李锋. 高功率微波及其效应研究进展综述[J]. 航天电子对抗, 2013, 29(3):15-19. (Yang Huijun, Li Wenkui, Li Feng. A review of HPM and its effects research progress[J]. Aerospace Electronic Warfare, 2013, 29(3): 15-19 doi: 10.3969/j.issn.1673-2421.2013.03.005
    [99] 谭志良, 李亚南, 宋培姣. 射频前端强电磁脉冲防护研究进展[J]. 北京理工大学学报, 2020, 40(3):231-242. (Tan Zhiliang, Li Yanan, Song Peijiao. Relevant research on electromagnetic pulse protection of RF front-end[J]. Transactions of Beijing Institute of Technology, 2020, 40(3): 231-242
    [100] 钱宝良. 国外高功率微波技术的研究现状与发展趋势[J]. 真空电子技术, 2015(2):2-7. (Qian Baoliang. The research status and developing tendency of high power microwave technology in foreign countries[J]. Vacuum Electronics, 2015(2): 2-7
    [101] 闫二艳, 马弘舸, 林江川, 等. 计算机机箱/电路板耦合及效应机理实验研究[J]. 微波学报, 2014, 30(s2):144-146. (Yan Eryan, Ma Hongge, Lin Jiangchuan, et al. Experiment study of effect mechanism and coupling of box/circuit of computer[J]. Journal of Microwaves, 2014, 30(s2): 144-146
    [102] 刘阳, 柴常春, 于新海, 等. GaN高电子迁移率晶体管强电磁脉冲损伤效应与机理[J]. 物理学报, 2016, 65:038402. (Liu Yang, Chai Changchun, Yu Xinhai, et al. Damage effects and mechanism of the GaN high electron mobility transistor caused by high electromagnetic pulse[J]. Acta Physica Sinica, 2016, 65: 038402 doi: 10.7498/aps.65.038402
    [103] Uslenghi P L, Erricolo D, Yang H Y D. Analysis and design of ultra wide-band and high-power microwave pulse interactions with electronic circuits and systems[R]. US, 2007.
    [104] Belanich J, Buckley L, Cartier J, et al. DoD's multidisciplinary university research initiative (MURI) program: impact and highlights from 25 years of basic research[R]. IDA Document D-5361, Institute for Defense Analyses, 2017.
  • 加载中
图(11)
计量
  • 文章访问数:  1389
  • HTML全文浏览量:  374
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-09
  • 修回日期:  2021-11-30
  • 录用日期:  2021-12-06
  • 网络出版日期:  2021-12-07
  • 刊出日期:  2021-12-15

目录

    /

    返回文章
    返回