留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

方形超高斯光束在Kerr介质中的强度演化特性

艾亦章 吕奇霖 李世文 马再如 王方 刘红婕 杜泉

艾亦章, 吕奇霖, 李世文, 等. 方形超高斯光束在Kerr介质中的强度演化特性[J]. 强激光与粒子束, 2022, 34: 041004. doi: 10.11884/HPLPB202234.210238
引用本文: 艾亦章, 吕奇霖, 李世文, 等. 方形超高斯光束在Kerr介质中的强度演化特性[J]. 强激光与粒子束, 2022, 34: 041004. doi: 10.11884/HPLPB202234.210238
Ai Yizhang, Lü Qilin, Li Shiwen, et al. Intensity evolution characteristics of square super-Gaussian beam in Kerr medium[J]. High Power Laser and Particle Beams, 2022, 34: 041004. doi: 10.11884/HPLPB202234.210238
Citation: Ai Yizhang, Lü Qilin, Li Shiwen, et al. Intensity evolution characteristics of square super-Gaussian beam in Kerr medium[J]. High Power Laser and Particle Beams, 2022, 34: 041004. doi: 10.11884/HPLPB202234.210238

方形超高斯光束在Kerr介质中的强度演化特性

doi: 10.11884/HPLPB202234.210238
基金项目: 四川省教育厅重点项目(11ZA011);四川省科技支撑项目(2014GZ0003)
详细信息
    作者简介:

    艾亦章,18483669246@163.com

    通讯作者:

    马再如,simazairu@sina.com

  • 中图分类号: O437

Intensity evolution characteristics of square super-Gaussian beam in Kerr medium

  • 摘要: 基于非线性薛定谔方程,采用分步傅里叶算法模拟了方形超高斯光束在Kerr介质中的传输情况,重点分析了方形超高斯光束轴向中心强度与对角方向强度的演化特性,同时还分析了其在Kerr介质中的自聚焦特性、峰值光强变化情况以及B积分变化情况。研究结果表明:方形超高斯光束通过Kerr介质后,距光束中心不同距离处有不同程度的强度增强和凹陷,光束中心附近的强度增强和凹陷较弱,光束边缘以及四角处的强度增强和凹陷较强,且对角方向上的强度增强和凹陷程度要强于轴向中心方向;减小阶数可以减缓光束的边缘强度增强,并可以减缓B积分的增长;减少Kerr介质厚度可以降低光束边缘强度增强程度,并可以减小B积分的大小。提出了光束边缘强度起伏的主要原因可能是光束的相干叠加。
  • 图  1  方形超高斯光束在Kerr介质的前表面和后表面的归一化光场分布

    Figure  1.  Normalized field distribution of square super-Gaussian beams on the front and back surfaces of Kerr medium

    图  2  方形超高斯光束轴向中心强度演化过程与对角强度演化过程

    Figure  2.  Axial center intensity evolution process and diagonal intensity evolution process of a square super-Gaussian beam

    图  3  方形超高斯光束在Kerr介质后表面的轴向中心强度与对角强度对比图

    Figure  3.  Comparison of axial central intensity and diagonal intensity of square super-Gaussian beam on the back surface of Kerr medium

    图  4  方形超高斯光束在Kerr介质中的B积分变化情况

    Figure  4.  B-integral variation of square super-Gaussian beams in Kerr medium

    图  5  方形超高斯光束在Kerr介质中的峰值光强变化情况

    Figure  5.  Peak intensity variation of square super-Gaussian beams in Kerr medium

  • [1] Baisden P A, Atherton L J, Hawley R A, et al. Large optics for the National Ignition Facility[J]. Fusion Science and Technology, 2016, 69(1): 295-351. doi: 10.13182/FST15-143
    [2] Wegner P J, Auerbach J M, Biesiada T A Jr, et al. NIF final optics system: frequency conversion and beam conditioning[C]//Proceedings of SPIE 5341. 2004: 180-189.
    [3] Manes K R, Spaeth M L, Adams J J, et al. Damage mechanisms avoided or managed for NIF large optics[J]. Fusion Science and Technology, 2016, 69(1): 146-249. doi: 10.13182/FST15-139
    [4] Spaeth M L, Manes K R, Bowers M, et al. National Ignition Facility laser system performance[J]. Fusion Science and Technology, 2016, 69(1): 366-394. doi: 10.13182/FST15-136
    [5] Feigenbaum E, Di Nicola J M G, Bude J D. Revisiting beam filamentation formation conditions in high power lasers[J]. Optics Express, 2019, 27(8): 10611-10630. doi: 10.1364/OE.27.010611
    [6] Lanier T E, Cohen S J, Nicola J, et al. Time-gated measurements of fusion-class laser beam profiles[C]//Proceedings of SPIE 11259. 2020: 39
    [7] 唐永林, 张小民, 景峰, 等. 强激光超高斯光束形成的自聚焦环的分裂与抑制[J]. 光学学报, 2001, 21(4):390-393. (Tang Yonglin, Zhang Xiaomin, Jing Feng, et al. Breakup and suppression of self-focusing rings originated from high intensity super-Gaussian beams[J]. Acta Optica Sinica, 2001, 21(4): 390-393 doi: 10.3321/j.issn:0253-2239.2001.04.002
    [8] 卢光山, 胡巍, 傅喜泉, 等. 环形光束的聚焦性质研究[J]. 光子学报, 2003, 32(2):209-213. (Lu Guangshan, Hu Wei, Fu Xiquan, et al. Study of focused annular beam[J]. Acta Photonica Sinica, 2003, 32(2): 209-213
    [9] 唐永林, 景峰, 张小民, 等. 强激光圆对称超高斯光束的自聚焦环[J]. 强激光与粒子束, 2000, 12(s1):221-224. (Tang Yonglin, Jing Feng, Zhang Xiaomin, et al. Self-focusing ring of circle symmetric super-Gaussian beam[J]. High Power Laser and Particle Beams, 2000, 12(s1): 221-224
    [10] 胡婧, 王欢, 季小玲. Kerr非线性介质中聚焦像散高斯光束的传输特性[J]. 物理学报, 2021, 70:074205. (Hu Jing, Wang Huan, Ji Xiaoling. Propagation characteristics of focused astigmatic Gaussian beams in Kerr nonlinear media[J]. Acta Physica Sinica, 2021, 70: 074205 doi: 10.7498/aps.70.20201661
    [11] 陈雪琼, 陈子阳, 蒲继雄, 等. 平顶光束经表面有缺陷的厚非线性介质后的光强分布[J]. 物理学报, 2013, 62:044213. (Chen Xueqiong, Chen Ziyang, Pu Jixiong, et al. Intensity distribution of the flat-topped beam propagating through the thick nonlinear medium with defects[J]. Acta Physica Sinica, 2013, 62: 044213 doi: 10.7498/aps.62.044213
    [12] 吕百达, 罗时荣. 强激光的计算模拟: 平顶高斯光束模型[J]. 红外与激光工程, 2001, 30(6):457-461. (Lü Baida, Luo Shirong. High-power laser modeling: flattened Gaussian beams[J]. Infrared and Laser Engineering, 2001, 30(6): 457-461 doi: 10.3969/j.issn.1007-2276.2001.06.014
    [13] 周宁, 张兰芝, 李东伟, 等. 飞秒平顶光束经微透镜阵列在熔融石英中的成丝及其超连续辐射[J]. 物理学报, 2018, 67:174205. (Zhou Ning, Zhang Lanzhi, Li Dongwei, et al. Filamentation and supercontinuum emission with flattened femtosecond laser beam by use of microlens array in fused silica[J]. Acta Physica Sinica, 2018, 67: 174205 doi: 10.7498/aps.67.20180306
    [14] Shen Y R. The principles of nonlinear optics[M]. New York: John Wiley and Sons, Inc, 1984.
    [15] 李琨, 张彬, 李恪宇, 等. 熔石英介质中强紫外激光自聚焦效应研究[J]. 强激光与粒子束, 2006, 18(10):1653-1656. (Li Kun, Zhang Bin, Li Keyu, et al. Nonlinear self-focusing by intense UV laser in fused silica[J]. High Power Laser and Particle Beams, 2006, 18(10): 1653-1656
    [16] Milam D, Hunt J T, Manes K R, et al. Modeling of filamentation damage induced in silica by 351-nm laser pulses[C]//Proceedings of SPIE 2966. 1996: 425-428.
    [17] 黄志华, 邓颖, 许党朋, 等. 高功率光纤啁啾脉冲放大光源中的B积分受限[J]. 强激光与粒子束, 2014, 26:081011. (Huang Zhihua, Deng Ying, Xu Dangpeng, et al. B integral limitation in high power fiber chirped pulse amplification optical source[J]. High Power Laser and Particle Beams, 2014, 26: 081011 doi: 10.11884/HPLPB201426.081011
    [18] Erickson M A, Cohen S J, Di Nicola J M, et al. Spatially resolved B-integral measurements on the NIF laser[C]//Proceedings of SPIE 11259. 2020: 17.
  • 加载中
图(6)
计量
  • 文章访问数:  760
  • HTML全文浏览量:  324
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-15
  • 修回日期:  2021-12-24
  • 录用日期:  2022-01-04
  • 网络出版日期:  2022-01-13
  • 刊出日期:  2022-03-19

目录

    /

    返回文章
    返回