留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粒子加速器局部控制网形变分析

张旭东 陈文军 张小东 孙国珍 张斌 王少明 袁建东

张旭东, 陈文军, 张小东, 等. 粒子加速器局部控制网形变分析[J]. 强激光与粒子束, 2022, 34: 044001. doi: 10.11884/HPLPB202234.210260
引用本文: 张旭东, 陈文军, 张小东, 等. 粒子加速器局部控制网形变分析[J]. 强激光与粒子束, 2022, 34: 044001. doi: 10.11884/HPLPB202234.210260
Zhang Xudong, Chen Wenjun, Zhang Xiaodong, et al. Analysis on deformation of partial control network of particle accelerator[J]. High Power Laser and Particle Beams, 2022, 34: 044001. doi: 10.11884/HPLPB202234.210260
Citation: Zhang Xudong, Chen Wenjun, Zhang Xiaodong, et al. Analysis on deformation of partial control network of particle accelerator[J]. High Power Laser and Particle Beams, 2022, 34: 044001. doi: 10.11884/HPLPB202234.210260

粒子加速器局部控制网形变分析

doi: 10.11884/HPLPB202234.210260
详细信息
    作者简介:

    张旭东,xdzhang@impcas.ac.cn

  • 中图分类号: TL56

Analysis on deformation of partial control network of particle accelerator

  • 摘要: 基于泰勒展开的方法实现局部控制网的拟合,使用卡方检验判断局部控制网中是否存在形变点。若存在形变点,则在选权迭代的过程中找到局部控制网中所有的形变点,并将卡方检验通过作为迭代终止条件。对哈尔滨工业大学空间地面模拟装置2号终端控制网的两期观测成果进行了分析,实验表明,将卡方检验和选权迭代法加入控制网拟合之后,可以很好地探测出局部控制网中的形变点。在找出所有形变点之后,可以求得更为准确的局部控制网拟合参数。
  • 图  1  三维坐标系变换示意图

    Figure  1.  Schematic diagram of three-dimensional coordinate system transformation

    图  2  SESRI实验终端2控制网

    Figure  2.  SESRI Experimental Terminal 2 Control Network

    图  3  初次平差后各点残差和权

    Figure  3.  Residuals and weights of each point after the initial adjustment

    图  4  二次平差后各点残差与权

    Figure  4.  Residuals and weights of each point after the second adjustment

    表  1  模拟计算

    Table  1.   Simulation calculation

    calculationstranslation factor/mmrotation factor/(°)factornumber of iterations
    ΔXΔYΔZαβγk
    1 0 0 0 0 0 0 1 1
    0 0 0 0 0 0 1
    2 5 5 5 5 5 5 1.002 947
    5 5 5 5 4.999 999 5 1.002
    3 10 10 10 10 10 10 1.001 1005
    10 10 10 10 9.999 999 10 1.001
    4 20 20 20 20 20 20 0.999 1085
    20 20 20 20 20 20 0.999
    5 40 40 40 40 40 40 0.998 1521
    40 40 39.999 999 40 40 40 0.998
    6 60 60 60 60 60 60 0.997 1068
    60 60 60 59.999 999 60 60 0.997
    下载: 导出CSV

    表  2  SESRI实验终端2的两期观测值

    Table  2.   Two-phase observations of SESRI Experimental Terminal 2

    pointthe first phase (2021.4)the second phase (2021.6)
    X/mmY/mmZ/mmX/mmY/mmZ/mm
    L55 −5092.17 879.62 14895.65 6286.72 −15526.63 821.79
    L57 −2 261.04 879.28 17717.09 2815.70 −17509.32 822.15
    L59 −3120.62 879.22 21412.56 −520.04 −15701.26 822.40
    L60 −4107.95 −821.72 24779.41 −3505.58 −13857.21 −878.36
    L61 −4107.01 877.20 24777.54 −3503.76 −13858.44 820.70
    L62 −4074.18 −817.67 27037.53 −5692.02 −13291.53 −874.05
    L63 −4077.77 876.91 27033.99 −5687.46 −13288.83 820.64
    L64 −6897.19 −773.87 29870.60 −7676.14 −9818.57 −830.23
    L65 −6897.30 880.72 29867.91 −7673.23 −9819.01 824.42
    L67 −9746.56 894.02 32716.15 −9665.07 −6316.66 837.73
    L68 −13217.29 −822.38 31985.43 −8041.08 −3163.51 −879.28
    L69 −13215.11 879.59 31991.11 −8046.88 −3164.01 822.76
    L70 −16050.40 −820.92 29166.76 −4572.37 −1178.27 −878.59
    L71 −16047.74 874.53 29165.73 −4571.81 −1180.86 816.96
    L72 −18878.70 −809.52 26339.60 −1096.73 800.14 −867.90
    L73 −18879.30 879.65 26340.53 −1097.19 801.22 821.38
    L74 −21711.32 −841.15 23519.47 2373.33 2784.62 −900.23
    L75 −21710.28 846.76 23519.11 2373.62 2783.72 787.79
    L76 −23062.45 −815.86 20935.80 5222.75 3403.02 −875.45
    L77 −23061.11 882.09 20947.33 5211.70 3405.02 822.63
    L78 −22368.90 −818.96 19093.13 6816.01 2245.99 −878.70
    L79 −22309.74 883.25 19037.43 6854.43 2174.44 823.70
    L80 −19511.28 −781.72 16233.69 8816.34 −1267.34 −841.25
    L81 −19509.35 875.00 16238.17 8811.89 −1267.75 815.53
    L82 −16684.40 −808.82 13405.92 10794.26 −4742.76 −868.25
    L83 −16690.55 881.77 13407.80 10794.50 −4735.99 822.43
    下载: 导出CSV

    表  3  两种方法求得的拟合参数

    Table  3.   Fitting parameters obtained by two methods

    calculationtranslation factor/mmrotation factor/(°)factor
    ΔXΔYΔZαβγk
    SA −18 397.56 58.4 25 070.31 89.974 03 74.637 72 179.9675 0.999 926
    this article −18 397.55 58.40 25 070.31 89.9743 74.637 71 179.967 8 0.999 926
    difference 0.009 4 −0.001 5 0.000 3 0.00027 −0.000 01 0.000 234 −0.000 000 4
    下载: 导出CSV
  • [1] 王岩, 岳建平, 周保兴, 等. 工程控制网点位稳定性分析方法的研究[J]. 测绘通报, 2004(8):12-14. (Wang Yan, Yue Jianping, Zhou Baoxing, et al. Research on the stability analysis method of engineering control network points[J]. Bulletin of Surveying and Mapping, 2004(8): 12-14 doi: 10.3969/j.issn.0494-0911.2004.08.005
    [2] 周江文, 欧吉坤. 名次法及拟稳点的选定[J]. 测绘学报, 1987(2):10-16. (Zhou Jiangwen, Ou Jikun. Ranking method and selection of pseudo-stable points[J]. Journal of Surveying and Mapping, 1987(2): 10-16
    [3] 周江文, 欧吉坤. 拟稳点的更换——兼论自由网平差若干问题[J]. 测绘学报, 1984(3):3-12. (Zhou Jiangwen, Ou Jikun. Replacement of pseudo-stable points—Also on some problems of free network adjustment[J]. Journal of Surveying and Mapping, 1984(3): 3-12
    [4] 张广伟, 李鹏, 宫辉. 城市地铁控制网稳定性分析及应用[J]. 测绘科学, 2008, 33(4):98-99. (Zhang Guangwei, Li Peng, Gong Hui. Stability analysis and application of urban subway control network[J]. Science of Surveying and Mapping, 2008, 33(4): 98-99 doi: 10.3771/j.issn.1009-2307.2008.04.033
    [5] 孙丕川, 黄声享, 李冠青. 港珠澳大桥岛隧工程GPS控制点稳定性研究[J]. 测绘通报, 2014(S2):58-59. (Sun Pichuan, Huang Shengxiang, Li Guanqing. Research on GPS control point stability of Hong Kong-Zhuhai-Macao Bridge Island Tunnel Project[J]. Bulletin of Surveying and Mapping, 2014(S2): 58-59
    [6] 崔家武, 张兴福, 周波阳, 等. 改进的GNSS/水准点优化选择的逐步剔除法[J]. 武汉大学学报(信息科学版), 2019, 44(10):1505-1510. (Cui Jiawu, Zhang Xingfu, Zhou Boyang, et al. Stepwise elimination method for improved GNSS/leveling point optimization selection[J]. Journal of Wuhan University (Information Science Edition), 2019, 44(10): 1505-1510
    [7] 吴迪军, 熊伟, 何婵军. 港珠澳大桥首级控制网四期测量成果比较与分析[J]. 测绘科学, 2013, 38(4):83-85. (Wu Dijun, Xiong Wei, He Chanjun. Comparison and analysis of the fourth-phase survey results of the first-level control network of the Hong Kong-Zhuhai-Macao Bridge[J]. Science of Surveying and Mapping, 2013, 38(4): 83-85
    [8] 陈文军. 重离子治疗装置的准直关键技术研究与应用[D]. 兰州: 中国科学院大学(中国科学院近代物理研究所), 2020: 22-24

    Chen Wenjun. Research and application of the key technology of heavy ion therapy device alignment[D]. Lanzhou: University of Chinese Academy of Sciences (Institute of Modern Physics, Chinese Academy of Sciences), 2020: 22-24
    [9] 郭迎钢, 李宗春, 李广云, 等. 粒子加速器工程控制网研究进展与展望[J]. 测绘通报, 2020(1):136-141. (Guo Yinggang, Li Zongchun, Li Guangyun, et al. Research progress and prospects of particle accelerator engineering control network[J]. Bulletin of Surveying and Mapping, 2020(1): 136-141
    [10] Guo Yinggang, Li Zongchun. A sectional control method to decrease the accumulated survey error of tunnel installation control network[J]. American Journal of Modern Physics, 2021, 10(1): 7.
    [11] 李方, 邹进贵, 王铜, 等. 粒子直线加速器精密三维控制网研究[J]. 地理空间信息, 2018, 16(2):87-89,110. (Li Fang, Zou Jingui, Wang Tong, et al. Research on precision three-dimensional control network of particle linear accelerator[J]. Geospatial Information, 2018, 16(2): 87-89,110 doi: 10.3969/j.issn.1672-4623.2018.02.029
    [12] 马娜, 董岚, 梁静, 等. 基于加速器控制网的GPS绝对测量精度探讨[J]. 北京测绘, 2014(6):23-27,43. (Ma Na, Dong Lan, Liang Jing, et al. Discussion on GPS absolute measurement accuracy based on accelerator control network[J]. Beijing Surveying and Mapping, 2014(6): 23-27,43 doi: 10.3969/j.issn.1007-3000.2014.06.007
    [13] 郭迎钢, 李宗春, 刘忠贺, 等. 加速器隧道控制网变形可监测性及稳定性分析[J]. 原子能科学技术, 2019, 53(9):1634-1642. (Guo Yinggang, Li Zongchun, Liu Zhonghe, et al. Deformation monitoring and stability analysis of accelerator tunnel control network[J]. Atomic Energy Science and Technology, 2019, 53(9): 1634-1642 doi: 10.7538/yzk.2019.youxian.0216
    [14] Chen Y Q, Chrzanowski A, Secord J M. A strategy for the analysis of the stability of reference points in deformation surveys[J]. CISM Journal ACSGC, 1990, 44(2): 141-149. doi: 10.1139/geomat-1990-0016
    [15] Nowel K, Kaminski W. Robust estimation of deformation from observation differences for free control networks[J]. Journal of Geodesy, 2014, 88(8): 749-764.
    [16] Wilkins R, Bastin G, Chrzanowski A. ALERT: A fully automated real time monitoring system[C]//Proceedings of the 11th FIG Symposium on Deformation Measurements. 2003.
    [17] Bocean V, Coppola G, Ford R, et al. Status report on the survey and alignment activities at Fermilab[C]//Proceedings of the 9th International Workshop on Accelerator Alignment. 2006.
    [18] Nowel K. Squared M split(q) S-transformation of control network deformations[J]. Journal of Geodesy, 2019, 93(7): 1025-1044. doi: 10.1007/s00190-018-1221-4
    [19] Nowel K. Specification of deformation congruence models using combinatorial iterative DIA testing procedure[J]. Journal of Geodesy, 2020, 94(12): 1-23.
    [20] 武汉大学测绘学院测量平差学科组编著. 误差理论与测量平差基础[M]. 武汉: 武汉大学出版社, 2003: 173-176

    Edited by the Surveying Adjustment Discipline Group, School of Surveying and Mapping, Wuhan University. Error theory and the foundation of surveying adjustment[M]. Wuhan: Wuhan University Press, 2003: 173-176
    [21] 曾文宪, 陶本藻. 三维坐标转换的非线性模型[J]. 武汉大学学报(信息科学版), 2003(5):566-568. (Zeng Wenxian, Tao Benzao. Non-linear model of three-dimensional coordinate transformation[J]. Journal of Wuhan University (Information Science Edition), 2003(5): 566-568
    [22] 陈义, 沈云中, 刘大杰. 适用于大旋转角的三维基准转换的一种简便模型[J]. 武汉大学学报(信息科学版), 2004, 29(12):1101-1105. (Chen Yi, Shen Yunzhong, Liu Dajie. A simple model of three-dimensional datum conversion with large rotation angle[J]. Journal of Wuhan University (Information Science Edition), 2004, 29(12): 1101-1105
    [23] 姚吉利, 韩保民, 杨元喜. 罗德里格矩阵在三维坐标转换严密解算中的应用[J]. 武汉大学学报(信息科学版), 2006, 31(12):1094-1096,1119. (Yao Jili, Han Baomin, Yang Yuanxi. The application of Rodriguez matrix in the rigorous calculation of three-dimensional coordinate transformation[J]. Journal of Wuhan University (Information Science Edition), 2006, 31(12): 1094-1096,1119
    [24] 陆珏, 陈义, 郑波. 总体最小二乘方法在三维坐标转换中的应用[J]. 大地测量与地球动力学, 2008(5):77-81. (Lu Jue, Chen Yi, Zheng Bo. The application of total least square method in three-dimensional coordinate transformation[J]. Journal of Geodesy and Geodynamics, 2008(5): 77-81
    [25] 姚宜斌, 黄承猛, 李程春, 等. 一种适用于大角度的三维坐标转换参数求解算法[J]. 武汉大学学报(信息科学版), 2012, 37(3):253-256. (Yao Yibin, Huang Chengmeng, Li Chengchun, et al. A three-dimensional coordinate conversion parameter solving algorithm suitable for large angles[J]. Journal of Wuhan University (Information Science Edition), 2012, 37(3): 253-256
    [26] 陈义, 陆珏. 以三维坐标转换为例解算稳健总体最小二乘方法[J]. 测绘学报, 2012, 41(5):715-722. (Chen Yi, Lu Jue. Taking three-dimensional coordinate transformation as an example to solve the robust total least squares method[J]. Journal of Surveying and Mapping, 2012, 41(5): 715-722
    [27] 方兴, 曾文宪, 刘经南, 等. 三维坐标转换的通用整体最小二乘算法[J]. 测绘学报, 2014, 43(11):1139-1143. (Fang Xing, Zeng Wenxian, Liu Jingnan, et al. General least squares algorithm for three-dimensional coordinate transformation[J]. Journal of Surveying and Mapping, 2014, 43(11): 1139-1143
    [28] 李仕东. 工程测量[M]. 北京: 人民交通出版社, 2005: 20-24

    Li Shidong. Engineering Surveying[M]. Beijing: People's Communications Press, 2005: 20-24
    [29] Huber P J . Robust statistics[ M] . New York : Wiley , 1981: 10-15.
    [30] 周江文. 经典误差理论与抗差估计[J]. 测绘学报, 1989(2):115-120. (Zhou Jiangwen. Classical error theory and robust estimation[J]. Acta Geomatica Survey and Mapping, 1989(2): 115-120 doi: 10.3321/j.issn:1001-1595.1989.02.005
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  758
  • HTML全文浏览量:  351
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-07
  • 修回日期:  2021-11-25
  • 录用日期:  2021-11-25
  • 网络出版日期:  2021-12-01
  • 刊出日期:  2022-03-19

目录

    /

    返回文章
    返回