留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近红外波段宽带时间低相干光参量放大技术

张淳耀 赵晓晖 高妍琦 王韬 张天雄 饶大幸 刘栋 崔勇 季来林 史海涛 冯伟 隋展

张淳耀, 赵晓晖, 高妍琦, 等. 近红外波段宽带时间低相干光参量放大技术[J]. 强激光与粒子束, 2022, 34: 031012. doi: 10.11884/HPLPB202234.210267
引用本文: 张淳耀, 赵晓晖, 高妍琦, 等. 近红外波段宽带时间低相干光参量放大技术[J]. 强激光与粒子束, 2022, 34: 031012. doi: 10.11884/HPLPB202234.210267
Zhang Chunyao, Zhao Xiaohui, Gao Yanqi, et al. Near-infrared broadband low-temporal-coherence optical parametric amplification[J]. High Power Laser and Particle Beams, 2022, 34: 031012. doi: 10.11884/HPLPB202234.210267
Citation: Zhang Chunyao, Zhao Xiaohui, Gao Yanqi, et al. Near-infrared broadband low-temporal-coherence optical parametric amplification[J]. High Power Laser and Particle Beams, 2022, 34: 031012. doi: 10.11884/HPLPB202234.210267

近红外波段宽带时间低相干光参量放大技术

doi: 10.11884/HPLPB202234.210267
基金项目: 国家自然科学基金项目(12074353)
详细信息
    作者简介:

    张淳耀,chunyao96@sina.com

    通讯作者:

    赵晓晖,xhzhao_silp@163.com

  • 中图分类号: O437.4

Near-infrared broadband low-temporal-coherence optical parametric amplification

  • 摘要: 在激光驱动惯性约束核聚变研究中,具有宽带、低相干特性的时间低相干光源将有望降低激光与等离子体相互作用的不稳定性,成为新一代激光驱动装置的有力竞争者。实现高功率低相干光放大输出是低相干光驱动器能否应用于惯性约束聚变领域的核心。光参量放大具有大带宽、高增益、无热效应等优势,可避免能级型放大介质的光谱窄化问题,是实现宽带低相干光放大的有效方案。系统阐述了宽带时间低相干光参量放大技术的原理和技术特性,并基于实验验证了采用非共线相位匹配的近红外波段宽带时间低相干光级联参量放大过程,最终实现$ 7 \times {10^7} $的放大增益和13.19%的转换效率。
  • 图  1  非共线相位匹配

    Figure  1.  Configuration for the noncollinear phase match

    图  2  OPA过程的数据模拟结果

    Figure  2.  Numerical simulation temporal characteristics of OPA processes

    图  3  泵浦光走离角随相位匹配角的变化

    Figure  3.  Variation of pumping walk-off angle with phase matching angle in different noncollinear crystal

    图  4  泵浦光与信号光相位匹配角随非共线角的变化

    Figure  4.  Variation of pump-signal noncollinear angle with phase matching angle in different noncollinear crystal

    图  5  实验方案示意图

    Figure  5.  Experimental layout

    图  6  输入信号光时域、频域分布和泵浦光时域分布图

    Figure  6.  Spectral and temporal profile of the broadband incoherent pulse and temporal profile of the input pump

    图  7  宽带时间低相干光参量放大过程时域分布图

    Figure  7.  Time domain distribution of the broadband incoherent pulses

    图  8  宽带时间低相干光参量放大光谱分布图

    Figure  8.  Spectral profile of the broadband incoherent pulses

    图  9  宽带时间低相干光参量放大近场能量分布

    Figure  9.  Near-field characterization of the broadband incoherent pulses

  • [1] Lindl J, Landen O, Edwards J, et al. Review of the National Ignition Campaign 2009-2012[J]. Physics of Plasmas, 2014, 21: 020501. doi: 10.1063/1.4865400
    [2] Fujioka S, Takabe H, Yamamoto N, et al. X-ray astronomy in the laboratory with a miniature compact object produced by laser-driven implosion[J]. Nature Physics, 2009, 5(11): 821-825. doi: 10.1038/nphys1402
    [3] Weber S, Bechet S, Borneis S, et al. P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines[J]. Matter and Radiation at Extremes, 2017, 2(4): 149-176. doi: 10.1016/j.mre.2017.03.003
    [4] Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
    [5] Bergh R A, Culshaw B, Cutler C C, et al. Source statistics and the Kerr effect in fiber-optic gyroscopes[J]. Optics Letters, 1982, 7(11): 563-565. doi: 10.1364/OL.7.000563
    [6] Bouma B E, Tearney G J. Handbook of optical coherence tomography[M]. New York: Marcel Dekker, 2002: 6.
    [7] Picozzi A, Aschieri P. Influence of dispersion on the resonant interaction between three incoherent waves[J]. Physical Review E, 2005, 72: 046606. doi: 10.1103/PhysRevE.72.046606
    [8] Picozzi A, Montes C, Haelterman M. Coherence properties of the parametric three-wave interaction driven from an incoherent pump[J]. Physical Review E, 2002, 66: 056605. doi: 10.1103/PhysRevE.66.056605
    [9] Dorrer C, Hill E M, Zuegel J D, et al. High-energy parametric amplification of spectrally incoherent broadband pulses[J]. Optics Express, 2020, 28(1): 451-471. doi: 10.1364/OE.28.000451
    [10] Dorrer C. Statistical analysis of incoherent pulse shaping[J]. Optics Express, 2009, 17(5): 3341-3352. doi: 10.1364/OE.17.003341
    [11] Ji Lailin, Zhao Xiaohui, Liu Dong, et al. High-efficiency second-harmonic generation of low-temporal-coherent light pulse[J]. Optics Letters, 2019, 44(17): 4359-4362. doi: 10.1364/OL.44.004359
    [12] Arisholm G. Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators[J]. Journal of the Optical Society of America B, 1999, 16(1): 117-127. doi: 10.1364/JOSAB.16.000117
    [13] 王艳海. 皮秒拍瓦前端OPCPA的工程设计研究[D]. 上海: 中国科学院上海光学精密机械研究所, 2009.

    Wang Yanhai. Engineering design research on OPCPA for the front end of picosecond-petawatt-class lasers[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2009
    [14] Hopf F A, Stegeman G I. Applied classical electrodynamics[M]. New York: Wiley, 1986.
    [15] 王红英. 光学参量啁啾脉冲放大技术研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2008.

    Wang Hongying. Experimental studies of optical parametric chirped pulse amplification[D]. Xi’an: Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2008
  • 加载中
图(9)
计量
  • 文章访问数:  1871
  • HTML全文浏览量:  357
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-11
  • 修回日期:  2021-09-17
  • 网络出版日期:  2021-10-08
  • 刊出日期:  2022-01-13

目录

    /

    返回文章
    返回