Waveguide optical resonator optimization of CAEP THz-FEL in 1−4.2 THz
-
摘要: 针对中物院高功率太赫兹自由电子激光(THz FEL)装置,结合FEL光腔振荡器实验的实际情况,提出了全波导近共心谐振腔设计方案。完成了THz波段波导光腔对光腔品质影响的理论分析和模拟计算,确定了波导设计尺寸为14 mm和22 mm。同时针对最初实验调试过程中无法出光饱和的问题,提出将波导更换为22 mm大尺寸波导的建议,波导更换后很快在2.56 THz获得饱和出光。另外针对实验频段无法覆盖到1~2 THz的问题,我们通过波导内壁粗糙度进行分析判断,提出采用14 mm铜材质的全波导FEL振荡器的设计方案,采用该方案后,实验成功将辐射频段拓展到0.7~4.2 THz,获得饱和输出。Abstract: Investigations of waveguide application to the whole optical cavity of CAEP’s high power THz-FEL device are achieved. The influence of waveguide on the quality of optical cavity is calculated by theoretic analysis and simulations. The waveguide gae size is designed to be 14 mm and 22 mm. In the experiment, we found it was have to get lasing in 1−2 THz. By analysis, we think the reason is that waveguide is made of Titanium and the waveguide wall roughness is unsuitable, which induce large diffraction loss of optical resonator. To reduce the loss, we use a new waveguide made of Cu to replace the old one. Using the new waveguide, lasing and saturation were attained in 1−2 THz in 2019. Then the whole facility counld run stably in 0.7−4.2 THz using the 14 mm Cu wave-guide.
-
Key words:
- free-electron laser (FEL) /
- terahertz /
- optical resonator /
- waveguide /
- numerical simulations
-
表 1 中物院 THz FEL装置的主要设计参数
Table 1. Parameters of CAEP’s THz free-electron laser(FEL)
electron beam wiggler energy /MeV 7 period /cm 3.8 peak current /A 12.5 peak field strength /kG 3.3 micro bunch/ps 8 number of periods 42 emittance/(πmm·mrad) 10 optical cavity energy spread /% 0.75(FWHM) cavity length /m 2.769 repetition rate/MHz 54.17 curvature radius/cm 221 -
[1] Tonouchi M. Cutting-edge Terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105. doi: 10.1038/nphoton.2007.3 [2] Scalari G, Walther C, Faist J, et al. Electrically switchable, two-color quantum cascade laser emitting at 1.39 and 2.3 THz[J]. Applied Physics Letters, 2006, 88: 141102. doi: 10.1063/1.2191407 [3] Bratman V, Glyavin M, Idehara T, et al. Review of subterahertz and terahertz gyrodevices at IAP RAS and FIR FU[J]. IEEE Transactions on Plasma Science, 2009, 37(1): 36-43. doi: 10.1109/TPS.2008.2004787 [4] Zhang Baolong, Ma Zhenzhe, Ma Jinglong, et al. 1.4-mJ high energy terahertz radiation from lithium niobates[J]. Laser & Photonics Reviews, 2021, 15: 2000295. [5] Chiu Y C, Huang Y C, Wang T D, et al. Generation of 4 THz radiation from lithium-niobate off-axis THz parametric oscillator[C]//Proceedings of the 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz2018). 2018. [6] 杨晶, 赵佳宇, 郭兰军, 等. 超快激光成丝产生太赫兹波的研究[J]. 红外与激光工程, 2015, 44(3):996-1007. (Yang Jing, Zhao Jiayu, Guo Lanjun, et al. Study of terahertz radiation from filamentation induced by ultrafast laser pulses[J]. Infrared and Laser Engineering, 2015, 44(3): 996-1007 doi: 10.3969/j.issn.1007-2276.2015.03.039 [7] Williams G P. FAR-IR/THz radiation from the Jefferson Laboratory, energy recovered linac, free electron laser[J]. Review of Scientific Instruments, 2002, 73(3): 1461-1463. doi: 10.1063/1.1420758 [8] Tecimer M, Holldack K, Elias L R. Dynamically tunable mirrors for THz free electron laser applications[J]. Physical Review Special Topics - Accelerators and Beams, 2010, 13: 030703. doi: 10.1103/PhysRevSTAB.13.030703 [9] Gavrilov N G, Knyazev B A, Kolobanov E I, et al. Status of the Novosibirsk high-power terahertz FEL[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 575(1/2): 54-57. [10] Jongma R T, Van Der Zande W J, Van Der Meer A F G, et al. Design of the Nijmegen high-resolution THz-FEL[C]//Proceedings of the 30th International Free Electron Laser Conference, FEL 2008. Gyeongju, Korea, 2008: 200-203. [11] Tecimer M, Brunel L C, Van Tol J. A design study of a FIR/THz FEL for high magnetic field research[C]//Proceedings of FEL 2006, BESSY. Berlin, Germany, 2006: 327-330. [12] Militsyn B L, von Helden G, Meijer G J M, et al. FELICE—the free electron laser for intra-cavity experiment[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 507(1/2): 494-497. [13] Klopf J M, Helm M, Kehr S C, et al. FELBE-upgrades and status of the IRlTHz FEL user facility at HZDR[C]//Proceedings of the 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz2018). 2018. [14] 窦玉焕, 束小建, 王元璋. 远红外自由电子激光光腔改进的模拟分析[J]. 强激光与粒子束, 2006, 18(8):1345-1348. (Dou Yuhuan, Shu Xiaojian, Wang Yuanzhang. Analysis and simulation of optical cavity in CAEP far-infrared FEL[J]. High Power Laser and Particle Beams, 2006, 18(8): 1345-1348 [15] 窦玉焕, 束小建, 邓德荣, 等. 中物院高功率THz FEL装置的理论分析和优化设计[J]. 强激光与粒子束, 2013, 25(3):662-666. (Dou Yuhuan, Shu Xiaojian, Deng Derong, et al. Design and simulations of CAEP high power THz free-electron laser[J]. High Power Laser and Particle Beams, 2013, 25(3): 662-666 doi: 10.3788/HPLPB20132503.0662 [16] 窦玉焕, 束小建. THz自由电子激光椭圆型耦合输出光腔[J]. 强激光与粒子束, 2013, 25(6):1455-1459. (Dou Yuhuan, Shu Xiaojian. Elliptical hole-coupling optical resonator in THz FEL[J]. High Power Laser and Particle Beams, 2013, 25(6): 1455-1459 doi: 10.3788/HPLPB20132506.1455 [17] 窦玉焕, 束小建, 徐勇, 等. 中物院高功率THz FEL装置波导的物理设计[J]. 太赫兹科学与电子信息学报, 2017, 15(5):702-706. (Dou Yuhuan, Shu Xiaojian, Xu Yong, et al. Effect investigation of waveguide for CAEP high power THz FEL[J]. Journal of Terahertz Science and Electronic Information Technology, 2017, 15(5): 702-706 doi: 10.11805/TKYDA201705.0702 [18] Dou Y H, Shu X J, Wang Y Z. 3D-simulations of transverse optical modes of the free electron laser resonator with hole output coupling[J]. Communications in Computational Physics, 2006, 1(5): 920-929.