Analysis of thermal effect of high-power semiconductor laser spectral combining grating
-
摘要: 提出了一种大功率半导体激光器光谱合束光栅仿真模型。该模型针对光谱合束中的核心器件光栅的光-热-应力变化特性进行了分析。数值分析结果表明,当激光巴条功率为200 W,自然对流系数为10 W·(m2·K)−1时,衍射光栅上温度最高点可升高至346.52 K,应力最高点可升高至0.4825 Pa,光栅表面变量最高为52.28 nm/mm,这将会使得反馈光束中心位置发生0.25~0.3 mm的偏移,从而影响激光功率以及合束效率。减少衍射光栅基底厚度,在相同激光光源条件下工作,温度、应力、面形以及应变的变化均能有效抑制,这与实验结果具有较高的一致性。该方法为大功率半导体激光器的结构设计和光学器件的测试分析提供了有效的多物理场分析,为激光器设计和测试提供了综合分析数值模型。Abstract: This paper presents a simulation model of a high-power semiconductor laser beam combining grating. This model analyzes the optical-thermal-stress change characteristics of the core device grating in the spectrum combining. The numerical analysis results show that when the power of the laser bar is 200 W and the natural convection coefficient is 10 W·(m2·K)−1, the highest temperature on the diffraction grating can be increased to 346.52 K, and the highest stress point can be increased to 0.4825 Pa, The maximum deformation per millimeter of the grating surface is 52.28 nm, which will cause the center position of the feedback beam to shift by 0.25 to 0.3 mm, which will affect the laser power and beam combining efficiency. By reducing the thickness of the diffraction grating substrate and working under the same laser light source conditions, the changes in temperature, stress, surface shape and strain can be effectively suppressed, which is consistent with the experimental results. This method provides an effective multi-physics analysis method for the structural design of high-power semiconductor lasers and the testing and analysis of optical devices, and provides a comprehensive analysis numerical model for laser design and testing.
-
Key words:
- spectral beam combining /
- semiconductor laser /
- diffraction grating /
- multiphysics /
- numerical model
-
表 1 线栅单元周期性边界参数
Table 1. Periodic boundary parameters of wire grid unit
grating period d/nm microstructure height h/nm microstructure width w/nm air refractive index n0 incident angle θ/(°) 625.0 1725.0 400.0 1.0 θi(i=1,2,3,4,5) 表 2 常见衍射光栅基底材料物理参数
Table 2. Physical parameters of common diffraction grating substrate materials
material n κ k/[W·(m·K)−1] ρ/kg·m−3 Cp/[J·(kg·K)] α/K−1 E/MPa μ quartz glass 1.508 2.89×10−8 1.38 2203 703 5.5×10−7 7.31×104 0.17 Y3Al5O12 1.816 — 11.06 4551 1582.7 6.94×10−6 2.86×105 0.25 Si(100) 3.579 7.49×10−4 152.46 2330 707.12 2.57×10−6 1.31×105 0.28 -
[1] Fan T Y. Laser beam combining for high-power, high-radiance sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 567-569. doi: 10.1109/JSTQE.2005.850241 [2] Huang R K, Chann B, Burgess J, et al. Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers[C]//Proc of SPIE. 2012: 824102. [3] 宁永强, 陈泳屹, 张俊, 等. 大功率半导体激光器发展及相关技术概述[J]. 光学学报, 2021, 41:0114001. (Ning Yongqiang, Chen Yongyi, Zhang Jun, et al. A brief review of the development and the techniques for high power semiconductor lasers[J]. Acta Optica Sinica, 2021, 41: 0114001 doi: 10.3788/AOS202141.0114001 [4] Zhang Bo, Wang Zhaorong, Brodbeck S, et al. Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity[J]. Light:Science & Applications, 2014, 3(1): 1-2. [5] Könning T, Köhler B, Wolf P, et al. Optical components for tailoring beam properties of multi-kW diode lasers[C]//Proc of SPIE. 2017, 100850G. [6] Hengesbach S, Krauch N, Holly C, et al. High-power dense wavelength division multiplexing of multimode diode laser radiation based on volume Bragg gratings[J]. Optics letters, 2013, 38(16): 3154-3155. doi: 10.1364/OL.38.003154 [7] Zhao Yue, Zhang Jinchuan, Zhou Yuhong, et al. External-cavity beam combining of 4-channel quantum cascade lasers[J]. Infrared Physics & Technology, 2017, 85: 52-55. [8] Sun Fangyuan, Shu Shili, Hou Guanyu, et al. Efficiency and threshold characteristics of spectrally beam combined high-power diode lasers[J]. IEEE Journal of Quantum Electronics, 2019, 55(1): 1-7. [9] Huang R K, Chann B, Glenn J D. Ultra-high brightness wavelength-stabilized kW-class fiber coupled diode laser[C]//Proc of SPIE. 2011: 791810. [10] Strohmaier S G, Erbert G, Meissner-Schenk A H, et al. kW-class diode laser bars[C]//Proc of SPIE. 2017: 100860C. [11] Zheng Ye, Yang Yifeng, Wang Jianhua, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Optics Express, 2016, 24(11): 12064-12066. [12] 侯睿, 赵尚弘, 胥杰, 等. 非相干光纤激光组束中光栅参数的确定[J]. 光学技术, 2007, 33(S1):97-99. (Hou Rui, Zhao Shanghong, Xu Jie, et al. The determination of grating parameters in incoherent fiber laser beam combination[J]. Optical Technique, 2007, 33(S1): 97-99 [13] 张俊明, 吴肖杰, 马晓辉, 等. 基于光谱合束技术的透射光栅模拟设计[J]. 应用光学, 2017, 38(3):514-520. (Zhang Junming, Wu Xiaojie, Ma Xiaohui, et al. Simulation design of transmission grating based on spectral beam combining technique[J]. Journal of Applied Optics, 2017, 38(3): 514-520 [14] Xu Jiao, Chen Junming, Chen Peng, et al. Study of the key factors affecting temperature of spectral-beam-combination grating[J]. Optics Express, 2018, 26(17): 21675-21678. doi: 10.1364/OE.26.021675 [15] Wang Hanbin, Song Yinglin, Yang Yifng, et al. Simulation and experimental study of laser-induced thermal deformation of spectral beam combination grating[J]. Optics Express, 2020, 28(22): 33334. doi: 10.1364/OE.408832 [16] Tremain D E, Mei K K. Application of unimoment method to scattering from periodic dielectric structures[J]. Journal of the Optical Society of America, 1978, 68(6): 775-780. doi: 10.1364/JOSA.68.000775 [17] 陈军, 洪伟. MEI方法分析介质光栅对平面波的绕射[J]. 通信学报, 1997, 18(6):26-31. (Chen Jun, Hong Wei. Analysis of plane wave diffraction by dielectric gratings with MEI[J]. Journal of China Institute of Communications, 1997, 18(6): 26-31 [18] 谭昊, 孟慧成, 余俊宏, 等. 基于Mini-bar叠阵的百瓦级光栅-外腔光谱合束半导体激光光源[J]. 光学学报, 2015, 35. (Tan Hao, Meng Huicheng, Yu Junhong, et al. Hundred-watt level spectral beam combining diode laser source based on mini-bar stack[J]. Acta Optica Sinica, 2015, 35 [19] 秦卫平, 方大纲. 有限元法结合周期边界条件分析介质光栅衍射[J]. 电波科学学报, 2001, 16(4):480-482. (Qin Weiping, Fang Dagang. Finite element method of solving diffraction problem of dielectric optical grating[J]. Chinese Journal of Radio Science, 2001, 16(4): 480-482 [20] Tang Enling, Lin Xiaochu, Han Yafei, et al. Experimental research on thermal-dynamic damage effect of K9 optical lens irradiated by femtosecond laser[J]. International Journal of Applied Glass Science, 2019, 11(2): 277-284. [21] Guan Kuiwen, Jiang Yanqi, Sun Changsen, et al. A two-layer model of laser interaction with skin: A photothermal effect analysis[J]. Optics & Laser Technology, 2011, 43(3): 425-429. [22] 刘全喜, 钟鸣. LD端面泵浦薄片激光器的温度和热应力分布研究[J]. 应用光学, 2010, 31(4):636-640. (Liu Quanxi, Zhong Ming. Temperature and thermal stress distribution in thin disk laser end-pumped by LD[J]. Journal of Applied Optics, 2010, 31(4): 636-640