留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大功率半导体激光器光谱合束光栅热效应分析

傅博文 章勤男 田勇 田劲东

傅博文, 章勤男, 田勇, 等. 大功率半导体激光器光谱合束光栅热效应分析[J]. 强激光与粒子束, 2022, 34: 031018. doi: 10.11884/HPLPB202234.210271
引用本文: 傅博文, 章勤男, 田勇, 等. 大功率半导体激光器光谱合束光栅热效应分析[J]. 强激光与粒子束, 2022, 34: 031018. doi: 10.11884/HPLPB202234.210271
Fu Bowen, Zhang Qinnan, Tian Yong, et al. Analysis of thermal effect of high-power semiconductor laser spectral combining grating[J]. High Power Laser and Particle Beams, 2022, 34: 031018. doi: 10.11884/HPLPB202234.210271
Citation: Fu Bowen, Zhang Qinnan, Tian Yong, et al. Analysis of thermal effect of high-power semiconductor laser spectral combining grating[J]. High Power Laser and Particle Beams, 2022, 34: 031018. doi: 10.11884/HPLPB202234.210271

大功率半导体激光器光谱合束光栅热效应分析

doi: 10.11884/HPLPB202234.210271
基金项目: 广东省重点领域研发计划资助项目(2020B090922005); 国家自然科学基金面上项目(62075140)
详细信息
    作者简介:

    傅博文,1910454038@email.szu.edu.cn

    通讯作者:

    田劲东,jindt@szu.edu.cn

  • 中图分类号: TN248.4

Analysis of thermal effect of high-power semiconductor laser spectral combining grating

  • 摘要: 提出了一种大功率半导体激光器光谱合束光栅仿真模型。该模型针对光谱合束中的核心器件光栅的光-热-应力变化特性进行了分析。数值分析结果表明,当激光巴条功率为200 W,自然对流系数为10 W·(m2·K)−1时,衍射光栅上温度最高点可升高至346.52 K,应力最高点可升高至0.4825 Pa,光栅表面变量最高为52.28 nm/mm,这将会使得反馈光束中心位置发生0.25~0.3 mm的偏移,从而影响激光功率以及合束效率。减少衍射光栅基底厚度,在相同激光光源条件下工作,温度、应力、面形以及应变的变化均能有效抑制,这与实验结果具有较高的一致性。该方法为大功率半导体激光器的结构设计和光学器件的测试分析提供了有效的多物理场分析,为激光器设计和测试提供了综合分析数值模型。
  • 图  1  激光器结构示意图

    Figure  1.  Schematic diagram of laser structure

    图  2  衍射光栅周期性结构

    Figure  2.  Periodic structure of diffraction grating

    图  3  衍射光栅基底几何模型

    Figure  3.  The geometric model of the diffraction grating substrate

    图  4  大功率半导体激光器光谱合束COMSOL实施流程图

    Figure  4.  Flow chart of high-power semiconductor laser spectrum combining COMSOL implementation

    图  5  光热仿真结果

    Figure  5.  Light thermal simulation results

    图  6  10 min时应力及形变分布云图

    Figure  6.  Stress and deformation nephogram at 10 min

    图  7  不同厚度衍射光栅中心点应力及形变变化曲线

    Figure  7.  Variation curves of stress and deformation at the center of diffraction grating with different thickness

    图  8  光栅表面各方向形变及−1级衍射效率变化曲线

    Figure  8.  Grating surface deformation in each direction and −1 order diffraction efficiency variation curves

    图  9  光束角度及位置偏移仿真结果

    Figure  9.  Simulation results of beam angle and position offset

    表  1  线栅单元周期性边界参数

    Table  1.   Periodic boundary parameters of wire grid unit

    grating period d/nmmicrostructure height h/nmmicrostructure width w/nmair refractive index n0incident angle θ/(°)
    625.01725.0400.01.0θi(i=1,2,3,4,5)
    下载: 导出CSV

    表  2  常见衍射光栅基底材料物理参数

    Table  2.   Physical parameters of common diffraction grating substrate materials

    materialnκk/[W·(m·K)−1]ρ/kg·m−3Cp/[J·(kg·K)]α/K−1E/MPaμ
    quartz glass1.5082.89×10−81.3822037035.5×10−77.31×1040.17
    Y3Al5O121.816 11.0645511582.76.94×10−62.86×1050.25
    Si(100)3.5797.49×10−4152.462330707.122.57×10−61.31×1050.28
    下载: 导出CSV
  • [1] Fan T Y. Laser beam combining for high-power, high-radiance sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 567-569. doi: 10.1109/JSTQE.2005.850241
    [2] Huang R K, Chann B, Burgess J, et al. Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers[C]//Proc of SPIE. 2012: 824102.
    [3] 宁永强, 陈泳屹, 张俊, 等. 大功率半导体激光器发展及相关技术概述[J]. 光学学报, 2021, 41:0114001. (Ning Yongqiang, Chen Yongyi, Zhang Jun, et al. A brief review of the development and the techniques for high power semiconductor lasers[J]. Acta Optica Sinica, 2021, 41: 0114001 doi: 10.3788/AOS202141.0114001
    [4] Zhang Bo, Wang Zhaorong, Brodbeck S, et al. Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity[J]. Light:Science & Applications, 2014, 3(1): 1-2.
    [5] Könning T, Köhler B, Wolf P, et al. Optical components for tailoring beam properties of multi-kW diode lasers[C]//Proc of SPIE. 2017, 100850G.
    [6] Hengesbach S, Krauch N, Holly C, et al. High-power dense wavelength division multiplexing of multimode diode laser radiation based on volume Bragg gratings[J]. Optics letters, 2013, 38(16): 3154-3155. doi: 10.1364/OL.38.003154
    [7] Zhao Yue, Zhang Jinchuan, Zhou Yuhong, et al. External-cavity beam combining of 4-channel quantum cascade lasers[J]. Infrared Physics & Technology, 2017, 85: 52-55.
    [8] Sun Fangyuan, Shu Shili, Hou Guanyu, et al. Efficiency and threshold characteristics of spectrally beam combined high-power diode lasers[J]. IEEE Journal of Quantum Electronics, 2019, 55(1): 1-7.
    [9] Huang R K, Chann B, Glenn J D. Ultra-high brightness wavelength-stabilized kW-class fiber coupled diode laser[C]//Proc of SPIE. 2011: 791810.
    [10] Strohmaier S G, Erbert G, Meissner-Schenk A H, et al. kW-class diode laser bars[C]//Proc of SPIE. 2017: 100860C.
    [11] Zheng Ye, Yang Yifeng, Wang Jianhua, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Optics Express, 2016, 24(11): 12064-12066.
    [12] 侯睿, 赵尚弘, 胥杰, 等. 非相干光纤激光组束中光栅参数的确定[J]. 光学技术, 2007, 33(S1):97-99. (Hou Rui, Zhao Shanghong, Xu Jie, et al. The determination of grating parameters in incoherent fiber laser beam combination[J]. Optical Technique, 2007, 33(S1): 97-99
    [13] 张俊明, 吴肖杰, 马晓辉, 等. 基于光谱合束技术的透射光栅模拟设计[J]. 应用光学, 2017, 38(3):514-520. (Zhang Junming, Wu Xiaojie, Ma Xiaohui, et al. Simulation design of transmission grating based on spectral beam combining technique[J]. Journal of Applied Optics, 2017, 38(3): 514-520
    [14] Xu Jiao, Chen Junming, Chen Peng, et al. Study of the key factors affecting temperature of spectral-beam-combination grating[J]. Optics Express, 2018, 26(17): 21675-21678. doi: 10.1364/OE.26.021675
    [15] Wang Hanbin, Song Yinglin, Yang Yifng, et al. Simulation and experimental study of laser-induced thermal deformation of spectral beam combination grating[J]. Optics Express, 2020, 28(22): 33334. doi: 10.1364/OE.408832
    [16] Tremain D E, Mei K K. Application of unimoment method to scattering from periodic dielectric structures[J]. Journal of the Optical Society of America, 1978, 68(6): 775-780. doi: 10.1364/JOSA.68.000775
    [17] 陈军, 洪伟. MEI方法分析介质光栅对平面波的绕射[J]. 通信学报, 1997, 18(6):26-31. (Chen Jun, Hong Wei. Analysis of plane wave diffraction by dielectric gratings with MEI[J]. Journal of China Institute of Communications, 1997, 18(6): 26-31
    [18] 谭昊, 孟慧成, 余俊宏, 等. 基于Mini-bar叠阵的百瓦级光栅-外腔光谱合束半导体激光光源[J]. 光学学报, 2015, 35. (Tan Hao, Meng Huicheng, Yu Junhong, et al. Hundred-watt level spectral beam combining diode laser source based on mini-bar stack[J]. Acta Optica Sinica, 2015, 35
    [19] 秦卫平, 方大纲. 有限元法结合周期边界条件分析介质光栅衍射[J]. 电波科学学报, 2001, 16(4):480-482. (Qin Weiping, Fang Dagang. Finite element method of solving diffraction problem of dielectric optical grating[J]. Chinese Journal of Radio Science, 2001, 16(4): 480-482
    [20] Tang Enling, Lin Xiaochu, Han Yafei, et al. Experimental research on thermal-dynamic damage effect of K9 optical lens irradiated by femtosecond laser[J]. International Journal of Applied Glass Science, 2019, 11(2): 277-284.
    [21] Guan Kuiwen, Jiang Yanqi, Sun Changsen, et al. A two-layer model of laser interaction with skin: A photothermal effect analysis[J]. Optics & Laser Technology, 2011, 43(3): 425-429.
    [22] 刘全喜, 钟鸣. LD端面泵浦薄片激光器的温度和热应力分布研究[J]. 应用光学, 2010, 31(4):636-640. (Liu Quanxi, Zhong Ming. Temperature and thermal stress distribution in thin disk laser end-pumped by LD[J]. Journal of Applied Optics, 2010, 31(4): 636-640
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1845
  • HTML全文浏览量:  391
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-06
  • 修回日期:  2021-10-30
  • 录用日期:  2021-11-11
  • 网络出版日期:  2021-11-17
  • 刊出日期:  2022-01-13

目录

    /

    返回文章
    返回