Coherent X-ray vortex generation based on echo-enabled harmonic generation free electron laser
-
摘要: 外种子型自由电子激光具有全相干、频谱稳定、极高亮度的优点,可以实现在超小空间和超快时间尺度下对物质结构的研究。具有特殊横向相位模式的光特别是具有螺旋相位的带轨道角动量的涡旋光已经在众多科学领域有了应用,基于自由电子激光原理产生的辐射横向模式基本上为简单的高斯模式,为产生具有横向螺旋相位的相干涡旋X射线,对基于回声谐波放大型(EEHG)自由电子激光产生涡旋光方案进行了深入研究,并且根据上海软X射线自由电子激光装置(SXFEL)的参数,进行了相关方案设计和模拟研究。三维模拟结果表明,外种子型EEHG自由电子激光可以产生峰值功率可达到GW量级的相干涡旋软X射线。
-
关键词:
- 涡旋光 /
- 外种子型自由电子激光 /
- 软X射线 /
- 轨道角动量
Abstract: External seeded free electron lasers (FELs) hold great advantage of emitting extremely high intensity, fully coherent, specially stable light, allowing researchers to study the structure of matter in ultra-small space and ultra-fast time scales. The light with a special transverse phase mode, especially vortex light with orbital angular momentum has been used in many scientific fields. However, the transverse mode of the FELs radiation is basically a simple gaussian mode. In this paper, the generation of the vortex light based on echo-enabled harmonic generation (EEHG) free electron laser is theoretically studied and the simulation studies are carried out according to the parameters of Shanghai Soft X-ray Free Electron Laser Facility (SXFEL). The results of three- dimensional simulation show that the EEHG type free electron laser can produce coherent vortex soft X rays with peak power up to GW magnitude.-
Key words:
- optical vortex /
- external seeded free electron laser /
- soft X ray /
- helical phase
-
表 1 模拟参数
Table 1. Parameters for simulation
energy/GeV peak current/A energy spread/keV laser wavelength/nm laser power_1/MW laser power_2/MW 1.6 1500 160 266 200 200 modulator length_1/m modulator length_2/m R56_1/m R56_2/m FEL wavelength/nm radiator period/m 1 1 0.0034 0.000093 7 0.055 -
[1] Huang Zhirong, Kim K J. Review of X-ray free-electron laser theory[J]. Physical Review Accelerators and Beams, 2007, 10: 034801. doi: 10.1103/PhysRevSTAB.10.034801 [2] Saldin E L, Schneidmiller E A, Yurkov M V. Statistical properties of radiation from VUV and X-ray free electron laser[J]. Optics Communications, 1998, 148(4/6): 383-403. [3] Stupakov G. Using the beam-echo effect for generation of short-wavelength radiation[J]. Physical Review Letters, 2009, 102: 074801. doi: 10.1103/PhysRevLett.102.074801 [4] Yu L H. Generation of intense uv radiation by subharmonically seeded single-pass free-electron lasers[J]. Physical Review A, 1991, 44(8): 5178-5193. doi: 10.1103/PhysRevA.44.5178 [5] Feng Chao, Deng Haixiao, Zhang Meng, et al. Coherent extreme ultraviolet free-electron laser with echo-enabled harmonic generation[J]. Physical Review Accelerators and Beams, 2019, 22(5): 050703. doi: 10.1103/PhysRevAccelBeams.22.050703 [6] Ribič P R, Abrami A, Badano L, et al. Coherent soft X-ray pulses from an echo-enabled harmonic generation free-electron laser[J]. Nature Photonics, 2019, 13(8): 555-561. doi: 10.1038/s41566-019-0427-1 [7] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189. doi: 10.1103/PhysRevA.45.8185 [8] Franke‐Arnold S, Allen L, Padgett M. Advances in optical angular momentum[J]. Laser & Photonics Reviews, 2008, 2(4): 299-313. [9] Kuga T, Torii Y, Shiokawa N, et al. Novel optical trap of atoms with a doughnut beam[J]. Physical Review Letters, 1997, 78(25): 4713-4716. doi: 10.1103/PhysRevLett.78.4713 [10] Jack B, Leach J, Romero J, et al. Holographic ghost imaging and the violation of a Bell inequality[J]. Physical Review Letters, 2009, 103: 083602. doi: 10.1103/PhysRevLett.103.083602 [11] Shigematsu K, Yamane K, Morita R, et al. Coherent dynamics of exciton orbital angular momentum transferred by optical vortex pulses[J]. Physical Review B, 2016, 93: 045205. doi: 10.1103/PhysRevB.93.045205 [12] Liu Baiyang, Cui Yuehui, Li Ronglin. A broadband dual-polarized dual-OAM-mode antenna array for OAM communication[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 16: 744-747. [13] van Veenendaal M. Interaction between X-ray and magnetic vortices[J]. Physical Review B, 2015, 92: 245116. doi: 10.1103/PhysRevB.92.245116 [14] Jüstel D, Friesecke G, James R D. Bragg–von Laue diffraction generalized to twisted X-rays[J]. Acta Crystallographica Section A:Foundations and Advances, 2016, 72(2): 190-196. doi: 10.1107/S2053273315024390 [15] van Veenendaal M, McNulty I. Prediction of strong dichroism induced by X rays carrying orbital momentum[J]. Physical Review Letters, 2007, 98: 157401. doi: 10.1103/PhysRevLett.98.157401 [16] Ye L, Rouxel J R, Asban S, et al. Probing molecular chirality by orbital-angular-momentum-carrying X-ray pulses[J]. Journal of Chemical Theory and Computation, 2019, 15(7): 4180-4186. doi: 10.1021/acs.jctc.9b00346 [17] Kotlyar V V, Almazov A A, Khonina S N, et al. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate[J]. Journal of the Optical Society of America A, 2005, 22(5): 849-861. doi: 10.1364/JOSAA.22.000849 [18] Beijersbergen M W, Allen L, Van der Veen H E L O, et al. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Optics Communications, 1993, 96(1/3): 123-132. [19] Terhalle B, Langner A, Päivänranta B, et al. Generation of extreme ultraviolet vortex beams using computer generated holograms[J]. Optics Letters, 2011, 36(21): 4143-4145. doi: 10.1364/OL.36.004143 [20] Sasaki S, McNulty I, Dejus R. Undulator radiation carrying spin and orbital angular momentum[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 582(1): 43-46. [21] Ribič P R, Gauthier D, De Ninno G. Generation of coherent extreme-ultraviolet radiation carrying orbital angular momentum[J]. Physical Review Letters, 2014, 112: 203602. doi: 10.1103/PhysRevLett.112.203602 [22] Hemsing E, Marinelli A. Echo-enabled X-ray vortex generation[J]. Physical Review Letters, 2012, 109: 224801. doi: 10.1103/PhysRevLett.109.224801 [23] Zhao Zhentang, Wang Dong, Gu Qiang, et al. Status of the SXFEL facility[J]. Applied Sciences, 2017, 7: 607. doi: 10.3390/app7060607 [24] Reiche S. GENESIS 1.3: a fully 3D time-dependent FEL simulation code[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 429(1/3): 243-248.