[1] |
Ditmire T, Bless S, Dyer G, et al. Overview of future directions in high energy-density and high-field science using ultra-intense lasers[J]. Radiation Physics and Chemistry, 2004, 70(4/5): 535-552.
|
[2] |
Ravasio A, Gregori G, Benuzzi-Mounaix A, et al. Direct observation of strong ion coupling in laser-driven shock-compressed targets[J]. Physical Review Letters, 2007, 99: 135006. doi: 10.1103/PhysRevLett.99.135006
|
[3] |
Barbrel B, Koenig M, Benuzzi-Mounaix A, et al. Measurement of short-range correlations in shock-compressed plastic by short-pulse X-ray scattering[J]. Physical Review Letters, 2009, 102: 165004. doi: 10.1103/PhysRevLett.102.165004
|
[4] |
Lee H J, Neumayer P, Castor J, et al. X-ray Thomson-scattering measurements of density and temperature in shock-compressed beryllium[J]. Physical Review Letters, 2009, 102: 115001. doi: 10.1103/PhysRevLett.102.115001
|
[5] |
Lee H J, Workman J, Wark J S, et al. Optically induced lattice dynamics probed with ultrafast X-ray diffraction[J]. Physical Review B, 2008, 77: 132301. doi: 10.1103/PhysRevB.77.132301
|
[6] |
Kalantar D H, Belak J F, Collins G W, et al. Direct observation of the α-ε transition in shock-compressed iron via nanosecond X-ray diffraction[J]. Physical Review Letters, 2005, 95: 075502. doi: 10.1103/PhysRevLett.95.075502
|
[7] |
胡昌明, 王翔, 刘仓理, 等. 非均匀性对自由面粒子速度信号的影响[J]. 实验力学, 2008, 23(3):271-275. (Hu Changming, Wang Xiang, Liu Cangli, et al. Material inhomogeneity influence on free surface velocity signals[J]. Journal of Experimental Mechanics, 2008, 23(3): 271-275
|
[8] |
Malone R M, Capelle G A, Celeste J R, et al. Overview of the line-imaging VISAR diagnostic at the National Ignition Facility (NIF)[C]//Proceedings of SPIE 6342, International Optical Design Conference 2006. Vancouver, 2006: 634220.
|
[9] |
Celliers P M, Bradley D K, Collins G W, et al. Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility[J]. Review of Scientific Instruments, 2004, 75(11): 4916-4929. doi: 10.1063/1.1807008
|
[10] |
Trott W M, Renlund A M, Jungst R G. Single-pulse Raman and photoacoustic spectroscopy studies of triaminotrinitrobenzene (TATB) and related compounds[C]//Proceedings of SPIE 0540, Southwest Conf on Optics '85. Albuquerque, 1985: 368-375.
|
[11] |
Asay J R, Hall C A, Konrad C H, et al. Use of Z-pinch sources for high-pressure equation-of-state studies[J]. International Journal of Impact Engineering, 1999, 23(1): 27-38. doi: 10.1016/S0734-743X(99)00059-7
|
[12] |
Chhabildas L C, Trott W M, Reinhart W D, et al. Incipient spall studies in tantalum-microstructural effects[J]. AIP Conference Proceedings, 2002, 620(1): 483-486.
|
[13] |
辛建婷, 谷渝秋, 李平, 等. 强激光加载下金属材料微喷回收诊断[J]. 物理学报, 2012, 61:236201. (Xin Jianting, Gu Yuqiu, Li Ping, et al. Study on metal ejection under laser shock loading[J]. Acta Physica Sinica, 2012, 61: 236201 doi: 10.7498/aps.61.236201
|
[14] |
Reich C, Gibbon P, Uschmann I, et al. Yield optimization and time structure of femtosecond laser plasma Kα sources[J]. Physical Review Letters, 2000, 84(21): 4846-4849. doi: 10.1103/PhysRevLett.84.4846
|
[15] |
王洪建, 叶雁, 李军, 等. 激光驱动产生X射线光源的双光谱成像装置: 201210252295.2[P]. 2012-11-14Wang Hongjian, Ye Yan, Li Jun, et al. Double-spectrum imaging device driven by laser to generate X-ray source: 201210252295.2[P]. 2012-11-14
|
[16] |
谭秀兰, 李恺, 罗炳池, 等. 去合金化工艺对纳米多孔铜纯度的影响[J]. 强激光与粒子束, 2013, 25(4):908-912. (Tan Xiulan, Li Kai, Luo Bingchi, et al. Effect of dealloying process on purity of nanoporous copper[J]. High Power Laser and Particle Beams, 2013, 25(4): 908-912 doi: 10.3788/HPLPB20132504.0908
|
[17] |
Singh T, Kahlon K S, Dhaliwal A S. Total bremsstrahlung spectral photon distributions in metallic targets in the photon energy range of 5–10 keV by 204Tl beta particles[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2009, 267(5): 737-741. doi: 10.1016/j.nimb.2009.01.009
|
[18] |
Wang Hongjian, Li Zeren, Chen Zhanbin. High conversion efficiency and small spot size of Kα X-ray generated from nano-foam Cu targets irradiated by femtosecond laser pulses[J]. Applied Physics B, 2018, 124: 172.
|
[19] |
熊勇. 基于Kα射线超短超强激光超热电子转换研究[D]. 北京: 中国工程物理研究院, 2008: 90-92Xiong Yong. Conversion efficiencies of ultra-short ultraintensity laser to ultra hot based on Ka X -ray electron[D]. Beijing: China Academy of Engineering Physics, 2008: 90-92
|
[20] |
张双根, 谷渝秋, 温贤伦, 等. 相对论激光-固体靶作用中超热电子能谱测量[J]. 光电子·激光, 2006, 17(3):347-351. (Zhang Shuanggen, Gu Yuqiu, Wen Xianlun, et al. A measurement of hot electron energy spectrum in relativistic laser solid target interactions[J]. Journal of Optoelectronics Laser, 2006, 17(3): 347-351 doi: 10.3321/j.issn:1005-0086.2006.03.021
|
[21] |
Liu Hongjie, Gu Yuqiu, Zhou Weimin, et al. Characterization of relativistic electrons generated by a cone guiding laser pulse[J]. Chinese Physics B, 2012, 21: 055207. doi: 10.1088/1674-1056/21/5/055207
|
[22] |
叶雁, 李剑峰, 李泽仁, 等. 超短超强激光与金属靶作用产生硬X射线照相[J]. 强激光与粒子束, 2008, 20(8):1357-1359. (Ye Yan, Li Jianfeng, Li Zeren, et al. Radiography of hard X-ray produced by ultra-short ultra-intense laser-metal targets interactions[J]. High Power Laser and Particle Beams, 2008, 20(8): 1357-1359
|
[23] |
刘艳莉. 工业X射线图像锐化技术算法研究[D]. 太原: 中北大学, 2015Liu Yanli. Study on industrial X-ray image sharpening technology algorithm[D]. Taiyuan: North University of China, 2015
|
[24] |
李晨光. 管道焊缝无损检测的综合方法结合及图像处理[D]. 青岛: 中国石油大学(华东), 2011Li Chenguang. Synthetical NDT and image processing for weld joint of pipeline[D]. Qingdao: China University of Petroleum (East China), 2011).
|
[25] |
王洪建, 阳庆国, 叶雁, 等. 重复频率下飞秒激光驱动产生的X射线焦斑测量[J]. 强激光与粒子束, 2015, 27:032039. (Wang Hongjian, Yang Qingguo, Ye Yan, et al. Measurement of femtosecond laser-driven X-ray focal spot with repetition frequency[J]. High Power Laser And Particle Beams, 2015, 27: 032039 doi: 10.11884/HPLPB201527.032039
|
[26] |
Mao J Y, Chen L M, Ge X L, et al. Spectrally peaked electron beams produced via surface guiding and acceleration in femtosecond laser-solid interactions[J]. Physical Review E, 2012, 85: 025401. doi: 10.1103/PhysRevE.85.025401
|