留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双枝节加载的L波段宽带高隔离度定向耦合器

马壮 周东方 张德伟 张毅 吕大龙

马壮, 周东方, 张德伟, 等. 双枝节加载的L波段宽带高隔离度定向耦合器[J]. 强激光与粒子束, 2022, 34: 043002. doi: 10.11884/HPLPB202234.210289
引用本文: 马壮, 周东方, 张德伟, 等. 双枝节加载的L波段宽带高隔离度定向耦合器[J]. 强激光与粒子束, 2022, 34: 043002. doi: 10.11884/HPLPB202234.210289
Ma Zhuang, Zhou Dongfang, Zhang Dewei, et al. Dual-branch loaded L-band broadband high isolation directional coupler[J]. High Power Laser and Particle Beams, 2022, 34: 043002. doi: 10.11884/HPLPB202234.210289
Citation: Ma Zhuang, Zhou Dongfang, Zhang Dewei, et al. Dual-branch loaded L-band broadband high isolation directional coupler[J]. High Power Laser and Particle Beams, 2022, 34: 043002. doi: 10.11884/HPLPB202234.210289

双枝节加载的L波段宽带高隔离度定向耦合器

doi: 10.11884/HPLPB202234.210289
基金项目: 国家科技重大专项项目
详细信息
    作者简介:

    马 壮,976093822@qq.com

  • 中图分类号: TN715

Dual-branch loaded L-band broadband high isolation directional coupler

  • 摘要: 提出了一种小型化双枝节加载的L波段微带线定向耦合器。使用功率相消技术提高定向耦合器的隔离度,并且采用两根长度不同的加载枝节分别在两个相近的频点上反射信号,从而实现耦合器的带宽扩展;同时采用缺陷地结构的慢波特性减小该定向耦合器的物理尺寸,并利用缺陷地结构产生的陷波,合并上述两根枝节反射抵消产生的的两个陷波,进一步提高定向耦合器的带宽和隔离度。该耦合器工作在L波段,耦合度约为10 dB,在整个L波段内的隔离度均优于−20 dB,最大约为−52.81 dB,相对带宽为60%。最后对设计的定向耦合器进行加工和测试,测试与仿真结果一致性较好,证明了该电路的可行性。
  • 图  1  本文设计的定向耦合器结构图

    Figure  1.  Structure of the directional coupler designed in this paper

    图  2  本文定向耦合器的仿真结果

    Figure  2.  Simulation results of the directional coupler in this paper

    图  3  无DGS结构时仿真结果图

    Figure  3.  Simulation results without DGS structure

    图  4  有无DGS结构隔离度仿真结果图

    Figure  4.  Simulation results with or without DGS structure isolation

    图  5  单枝节+DGS结构仿真结果图

    Figure  5.  Simulation results of single branch + DGS structure

    图  6  所设计定向耦合器表面电流分布

    Figure  6.  Surface current distribution of the designed directional coupler

    图  7  两根枝节间距离对隔离度的影响

    Figure  7.  Influence of the distance between two branches on the isolation

    图  8  本文提出的定向耦合器实物图

    Figure  8.  The physical diagram of the directional coupler proposed in this paper

    图  9  仿真和实测S参数对比

    Figure  9.  Comparison of simulated and measured S parameters

  • [1] Tang C W, Chen M G, Lin Y S. Broadband microstrip branch-line coupler with defected ground structure[J]. Electron Lett, 2006, 42(25): 1458-1460. doi: 10.1049/el:20063025
    [2] Yoon H J, Min B W. Two section wideband 90° hybrid coupler using parallel-coupled three-line[J]. IEEE Trans Microw Theory Tech, 2017, 27(6): 548-550.
    [3] Cao Y Y, Wu Y W, Jiang Z, et al. A compact millimeter-wave planar directional coupled crossover with a wide bandwidth[J]. IEEE Microwave and Wireless Components Letters, 2020: 1-4.
    [4] Muraguchi M, Yukitake T, Naito Y. Design of compact directional couplers for UWB applications[J]. IEEE Trans Microw Theory Tech, 2007, 55(2): 189-194. doi: 10.1109/TMTT.2006.889150
    [5] Wan K K, Moon Q L, Jin H K. A passive circulator with high isolation using a directional coupler for RFID[J]. IEEE MTT-S International Microwave Symposium Digest, 2006: 1177-1178.
    [6] 陈蕾, 尚宇, 魏峰. 一种新的缺陷地微带线定向耦合器[J]. 西安工业大学学报, 2008, 28(4):372-374. (Chen Lei, Shang Yu, Wei Feng. A new defective ground microstrip line directional coupler[J]. Journal of Xi'an Technological University, 2008, 28(4): 372-374 doi: 10.3969/j.issn.1673-9965.2008.04.012
    [7] Chang W S, Liang C H, Chang C Y. Wideband high-isolation and perfect-balance microstrip rat-race coupler[J]. IEEE Electronics Letters, 2012, 48(7): 382-383. doi: 10.1049/el.2012.0227
    [8] Muller J, Pham M N, Jacob A F. Directional coupler compensation with optimally positioned capacitances[J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(11): 2824-2832. doi: 10.1109/TMTT.2011.2165961
    [9] Zhang Z H, Rautschke F, Nguyen H. A novel structure of high directivity broadband microstrip coupler[C]//IEEE MTT-S International Microwave and Optoelectronics Conference. 2015: 1-4.
    [10] 周越, 申冀湘, 宋亮. 电感补偿高方向性的微带定向耦合器[J]. 无线电工程, 2013, 43(7):38-40. (Zhou Yue, Shen Jixiang, Song Liang. Microstrip directional coupler with inductance compensation and high directivity[J]. Radio Engineering, 2013, 43(7): 38-40 doi: 10.3969/j.issn.1003-3106.2013.07.013
    [11] Ha J, Shin W, Lee Y. An inductive-loading method for directivity enhancement of microstrip coupled-line couplers[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(4): 356-358. doi: 10.1109/LMWC.2017.2678422
    [12] 杨宇斌. 带短路支节的高隔离度分支线定向耦合器设计研究[D]. 南京: 南京邮电大学, 2015

    Yang Yubin. Design and research of high isolation branch line directional coupler with short-circuit branch[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2015
    [13] Rahman A, Verma A K, Boutejdar A, et al. Control of bandstop response of microstrip low-pass filter using slot in ground plane[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(3): 1008. doi: 10.1109/TMTT.2004.823587
    [14] Lim J S, Kim C S, Lee Y T, et al. Design of low-pass filters using defected ground structure and compensated microstrip line[J]. Electron Lett, 2002, 38(22): 1357. doi: 10.1049/el:20020889
    [15] Lim J S, Kim C S, Ahn D, et al. Design of the low-pass filters using defected ground structure[J]. IEEE MTT, 2005, 53(8): 2539. doi: 10.1109/TMTT.2005.852765
    [16] Guo Huili, Xin Huajiang, Xiao Mingzhong. A novel defected ground structure and its application to a low-pass filter[J]. Microwave Opt Technol Lett, 2006, 48(9): 1760. doi: 10.1002/mop.21750
  • 加载中
图(9)
计量
  • 文章访问数:  1553
  • HTML全文浏览量:  698
  • PDF下载量:  179
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-14
  • 修回日期:  2021-12-06
  • 录用日期:  2021-12-08
  • 网络出版日期:  2021-12-14
  • 刊出日期:  2022-03-19

目录

    /

    返回文章
    返回