留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速流场下凸台周围的气动光学效应

李超 王德恩 袁强 邓学伟

李超, 王德恩, 袁强, 等. 高速流场下凸台周围的气动光学效应[J]. 强激光与粒子束, 2022, 34: 031017. doi: 10.11884/HPLPB202234.210319
引用本文: 李超, 王德恩, 袁强, 等. 高速流场下凸台周围的气动光学效应[J]. 强激光与粒子束, 2022, 34: 031017. doi: 10.11884/HPLPB202234.210319
Li Chao, Wang Deen, Yuan Qiang, et al. Aero-optical effect around turrets in high speed regime[J]. High Power Laser and Particle Beams, 2022, 34: 031017. doi: 10.11884/HPLPB202234.210319
Citation: Li Chao, Wang Deen, Yuan Qiang, et al. Aero-optical effect around turrets in high speed regime[J]. High Power Laser and Particle Beams, 2022, 34: 031017. doi: 10.11884/HPLPB202234.210319

高速流场下凸台周围的气动光学效应

doi: 10.11884/HPLPB202234.210319
基金项目: 国家自然科学基金项目(61775199)
详细信息
    作者简介:

    李 超,lichao.52@foxmail.com

    通讯作者:

    袁 强,qiangyuan.caep@caep.cn

  • 中图分类号: O436

Aero-optical effect around turrets in high speed regime

  • 摘要: 针对高速流场下凸台周围的气动光学效应,对不同马赫数下的三种凸台形状周围的流场进行仿真计算,计算得到流场的密度变化,计算了光线经流场传输后的光程差。仿真结果表明:随马赫数增大,光程差逐步增大;同等条件下,不同出射角度对应的光程差不同,凸台存在强烈的尾流区域,从而导致较大的光程差;在马赫数达到跨音速时,凸台顶端也会产生较大的光程差;曲率较小的凸台结构对周围流场的影响较小。
  • 图  1  凸台结构示意图

    Figure  1.  Turret structures

    图  2  流场域示意图(翼展方向视图)

    Figure  2.  Schematic of computational domain (span wise view)

    图  3  不同飞行速度下3种凸台形状周围流场的密度场分布(y=0剖面)

    Figure  3.  Contours of density in a cutting plane where y=0 at different flight speed

    图  4  不同飞行速度下3种凸台形状周围流场的密度场分布(z=0.1875 m剖面)

    Figure  4.  Contours of density in a cutting plane where z=0.1875 m at different flight speed

    图  5  光束出射方向示意图,其中AZ为转角,EL为仰角

    Figure  5.  Definition of beam viewing, where AZ is the azimuthal angle, EL is the elevation angle

    图  6  飞行速度为0.4Ma时,光程差分布示意图

    Figure  6.  Contours of optical path differences (OPDs) in the entire field of view at a flight speed of 0.4Ma

    图  7  飞行速度为0.8Ma时,光程差分布示意图

    Figure  7.  Contours of OPDs in the entire field of view at a flight speed of 0.8Ma

    图  8  飞行速度为1.5Ma时,光程差分布示意图

    Figure  8.  Contours of OPDs in the entire field of view at a flight speed of 1.5Ma

    图  9  出射角度为中轴线上45°时,光程差计算结果(turret Ⅱ,0.4Ma

    Figure  9.  OPDs at beam direction of 45° (turret Ⅱ, 0.4Ma)

    表  1  不同飞行速度下的光程差(turret Ⅱ,出射角度为中轴线上45°)

    Table  1.   OPDs at different flight speed (turret Ⅱ, AZ: 0°, EL: 45°)

    MaOPD(minimum)/
    μm
    OPD(maximum)/
    μm
    OPD(average)/
    μm
    0.40.1230.8430.472
    0.81.5734.4063.011
    1.523.56026.60625.345
    下载: 导出CSV

    表  2  不同凸台形状下的光程差(出射角度为中轴线上45°,飞行速度为0.8Ma)

    Table  2.   OPDs of different turret shapes (AZ: 0°, EL: 45°, 0.8Ma)

    turret
    shape
    OPD(minimum)/
    μm
    OPD(maximum)/
    μm
    OPD(average)/
    μm
    turret Ⅰ1.93204.61603.2908
    turret Ⅱ1.57294.40583.0110
    turret Ⅲ1.11864.17052.7100
    下载: 导出CSV
  • [1] Porter C, Gordeyev S, Zenk M, et al. Flight measurements of aero-optical distortions from a flat-windowed turret on the airborne aero-optics laboratory (AAOL)[C]//42nd AIAA Plasmadynamics and Lasers Conference. 2011: 27-30.
    [2] Busse F H. Visualizing the dynamics of the onset of turbulence[J]. Science, 2004, 305(5690): 1574-1575. doi: 10.1126/science.1102824
    [3] Jumper E J, Fitzgerald E J. Recent advances in aero-optics[J]. Progress in Aerospace Sciences, 2001, 37(3): 299-329. doi: 10.1016/S0376-0421(01)00008-2
    [4] Gordeyev S, Jumper E J, Ng T T, et al. Aero-optical characteristics of compressible, subsonic turbulent boundary layers[C]//34th AIAA Plasmadynamics and Lasers Conference. 2003.
    [5] Mathews E R, Wang Kan, Wang Meng, et al. LEs of an aero-optical turret flow at high Reynolds number[C]//54th AIAA Aerospace Sciences Meeting. 2016.
    [6] Coirier W J, Porter C, Barber J, et al. Aero-optical evaluation of notional turrets in subsonic, transonic and supersonic regimes[C]//45th AIAA Plasmadynamics & Lasers Conference. 2014.
    [7] 冯定华, 李桦, 肖飞, 等. 光学窗口凹腔流场的光学传输效应研究[J]. 光学学报, 2012, 32:0401004. (Feng Dinghua, Li Hua, Xiao Fei, et al. Study on optical transmission effect of optical window’s cavity flow[J]. Acta Optica Sinica, 2012, 32: 0401004 doi: 10.3788/AOS201232.0401004
    [8] 路大举, 张凯, 董航, 等. 共形转塔气动光学效应时空特性研究(英文)[J]. 应用光学, 2019, 40(6):1022-1032. (Lu Daju, Zhang Kai, Dong Hang, et al. Space-time characteristics of aero-optical effect around conformal turrets[J]. Journal of Applied Optics, 2019, 40(6): 1022-1032 doi: 10.5768/JAO201940.0601015
    [9] 吴琳, 房建成, 杨照华. 高超声速湍流流场高折射率梯度区域气动光学畸变仿真研究[J]. 光学学报, 2009, 29(11):2952-2957. (Wu Lin, Fang Jiancheng, Yang Zhaohua. Study on aero-optical distortion simulation of high refraction index gradient regions in hypersonic turbulent flow[J]. Acta Optica Sinica, 2009, 29(11): 2952-2957 doi: 10.3788/AOS20092911.2952
    [10] 蒋倩雯. 拉盖尔-高斯光束的气动光学效应[D]. 南京: 南京理工大学, 2017

    Jiang Qianwen. Aero-optical effects of Laguerre-Ggaussian vortex beams[D]. Nanjing: Nanjing University of Science and Technology, 2017
    [11] Jumper E J, Gordeyev S, Cavalieri D, et al. Airborne aero-optics laboratory-transonic (AAOL-T)[C]//53rd AIAA Aerospace Sciences Meeting. 2015.
    [12] Wang Meng, Mani A, Gordeyev S. Physics and computation of aero-optics[J]. Annual Review of Fluid Mechanics, 2012, 44(1): 299-321. doi: 10.1146/annurev-fluid-120710-101152
    [13] 邓诗涛. 变折射率介质中的光传输及像质评价[D]. 杭州: 浙江大学, 2008

    Deng Shitao. Image evaluation of the optical transmission through inhomogeneous medium[D]. Hangzhou: Zhejiang University, 2008
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1866
  • HTML全文浏览量:  307
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-14
  • 修回日期:  2022-02-28
  • 录用日期:  2022-03-03
  • 网络出版日期:  2022-03-04
  • 刊出日期:  2022-01-13

目录

    /

    返回文章
    返回