留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉宽对中红外激光带内损伤HgCdTe材料的影响

胡蔚敏 王小军 田昌勇 杨晶 刘可 彭钦军

胡蔚敏, 王小军, 田昌勇, 等. 脉宽对中红外激光带内损伤HgCdTe材料的影响[J]. 强激光与粒子束, 2022, 34: 011009. doi: 10.11884/HPLPB202234.210321
引用本文: 胡蔚敏, 王小军, 田昌勇, 等. 脉宽对中红外激光带内损伤HgCdTe材料的影响[J]. 强激光与粒子束, 2022, 34: 011009. doi: 10.11884/HPLPB202234.210321
Hu Weimin, Wang Xiaojun, Tian Changyong, et al. Influence of mid-infrared laser pulse width on in-band damage threshold of HgCdTe[J]. High Power Laser and Particle Beams, 2022, 34: 011009. doi: 10.11884/HPLPB202234.210321
Citation: Hu Weimin, Wang Xiaojun, Tian Changyong, et al. Influence of mid-infrared laser pulse width on in-band damage threshold of HgCdTe[J]. High Power Laser and Particle Beams, 2022, 34: 011009. doi: 10.11884/HPLPB202234.210321

脉宽对中红外激光带内损伤HgCdTe材料的影响

doi: 10.11884/HPLPB202234.210321
基金项目: 国家自然科学基金青年科学基金项目(61805259);中国科学院固体激光重点实验室基金项目
详细信息
    作者简介:

    胡蔚敏,huweimin18@mails.ucas.ac.cn

    通讯作者:

    王小军,wangxj@mail.ipc.ac.cn

  • 中图分类号: TL814

Influence of mid-infrared laser pulse width on in-band damage threshold of HgCdTe

  • 摘要: 研究了脉宽对于中红外脉冲激光带内损伤碲镉汞(HgCdTe)材料阈值的影响,使用一维自洽模型对激光辐照HgCdTe材料程中的载流子数密度,载流子对数目流,载流子对能流,载流子温度和材料晶格温度等相关参数进行仿真计算。仿真结果表明,波长2.85 μm,脉宽30 ps~10 ns单脉冲激光带内辐照HgCdTe材料的损伤阈值为200~500 mJ/cm2。其中,300 ps~3 ns脉冲激光的损伤阈值相近,均为200 mJ/cm2且低于其他脉宽激光的损伤阈值。搭建实验光路并进行相关实验验证仿真模型的正确性。实验发现,波长2.85 μm、脉宽300 ps的单脉冲激光带内辐照HgCdTe材料的损伤阈值在200 mJ/cm2左右。相同条件下,10 ns单脉冲激光带内辐照HgCdTe材料的损伤阈值约474 mJ/cm2。百皮秒脉冲激光对HgCdTe材料的损伤过程结合了热击穿和光学击穿效应,其独特的毁伤机理加剧了材料的损伤。
  • 图  1  Hg1-xCdxTe材料的能带结构随组分的变化关系和HgCdTe材料的响应曲线图(红色曲线)

    Figure  1.  Band structure of Hg1-xCdxTe changes with composition and image of response curve of HgCdTe material (red curve)

    图  2  入射面处载流子温度、晶格温度与载流子数密度随时间的变化(100 ps,200 mJ/cm2的激光脉冲)

    Figure  2.  Variation of carrier temperature, lattice temperature and number density of carrier with time at the incident plane (100 ps, 200 mJ/cm2 incident pulse)

    图  3  HgCdTe材料的温度和载流子数目随激光脉冲宽度的变化(能量密度200 mJ/cm2

    Figure  3.  Material’s temperature and carrier density in the HgCdTe material change with pulse width (energy density is 200 mJ/cm2)

    图  4  不同脉宽(30 ps~10 ns)激光作用下HgCdTe材料温度和载流子数密度随入射能量密度的变化(能量密度100~500 mJ/cm2

    Figure  4.  Material’s temperature and carrier density in HgCdTe material irradiated by different kinds of laser pulses change with energy density (pulse width is 30 ps ~ 10 ns. Energy density is 100~500 mJ/cm2)

    图  5  HgCdTe探测器装置的分层结构示意图和探测器滤光片的透过率曲线

    Figure  5.  Hierarchical structure diagram of HgCdTe detector and transmittance curve of optical filter

    图  6  实验光路示意图

    Figure  6.  Schematic diagram of experimental device

    图  7  探测器像元在衰减法下的响应轮廓图和光强度衰减为原强度的2.85×10-7时探测器显示的光斑图

    Figure  7.  Contour plot of detector pixels’ response measured by attenuation method and image of light spot displayed by the detector (The light intensity attenuates to 2.85×10-7 of the original intensity)

    图  8  脉宽300 ps(能量密度为193 mJ/cm2)和10 ns(能量密度为474 mJ/cm2)的单脉冲激光造成探测器单像元损伤图像

    Figure  8.  Damage images of the detector pixel induced by 300 ps (energy density is 193 mJ/cm2) and 10 ns (energy density is 474 mJ/cm2) single pulsed laser

  • [1] 朱志武. 短脉冲激光对可见光CCD及滤光片组件的损伤效应研究[D]. 长沙: 国防科学技术大学, 2013: 45-74

    Zhu Zhiwu. Short pulsed laser induced damage to visible light CCD and optical filter module[D]. Changsha: National University of Defense Technology, 2013: 45-74
    [2] Vohra A, Bansal S K, Sharma R K, et al. Surface effects on laser-induced damage in Si[J]. Journal of Physics D: Applied Physics, 1990, 23(1): 56-66. doi: 10.1088/0022-3727/23/1/010
    [3] Becker M F, Zhang Chenzhi, Watkins S E, et al. Laser-induced damage to silicon CCD imaging sensors[C]//Proceedings of SPIE 1105, Materials for Optical Switches, Isolators, and Limiters. 1989: 68-77.
    [4] 王金宝. 激光辐照可见光面阵Si-CCD探测器实验研究[D]. 长沙: 国防科学技术大学, 2003: 26-29

    Wang Jinbao. Experimental investigation of the visible light arrays of Si-CCD irradiated by the laser[D]. Changsha: National University of Defense Technology, 2003: 26-29
    [5] Wang Tingting, Li Pingxue, Yu Xuyang, et al. High-energy hundred-picosecond fiber-solid hybrid laser and its application in laser-induced damage in PIN photodiode[J]. Laser Physics, 2020, 30: 036004. doi: 10.1088/1555-6611/ab6d65
    [6] 杨建荣. 碲镉汞材料物理与技术[M]. 北京: 国防工业出版社, 2012

    Yang Jianrong. Physics and technology of HgCdTe materials[M]. Beijing: National Defense Industry Press, 2012
    [7] 杨海峰. 线阵碲镉汞探测器的光致反常响应及闩锁效应研究[D]. 长沙: 国防科学技术大学, 2015: 1-6

    Yang Haifeng. Researches on the abnormal response and latchup effect of PV-HgCdTe linear array detector induced by light[D]. Changsha: National University of Defense Technology, 2015: 1-6
    [8] Bartoli F, Esterowitz L, Kruer M, et al. Irreversible laser damage in ir detector materials[J]. Applied Optics, 1977, 16(11): 2934-2937. doi: 10.1364/AO.16.002934
    [9] Chen C S, Liu A H, Sun G, et al. Analysis of laser damage threshold and morphological changes at the surface of a HgCdTe crystal[J]. Journal of Optics A:Pure and Applied Optics, 2006, 8(1): 88-92. doi: 10.1088/1464-4258/8/1/014
    [10] Garg A, Kapoor A, Tripathi K N, et al. Laser induced damage studies in mercury cadmium telluride[J]. Optics & Laser Technology, 2007, 39(7): 1319-1327.
    [11] 许晓军, 曾交龙, 陆启生, 等. 1.06 μm激光对PC型HgCdTe探测器的破坏阈值研究[J]. 强激光与粒子束, 1998, 10(4):552-556. (Xu Xiaojun, Zeng Jiaolong, Lu Qisheng, et al. Research of damage thresholds of PC-type HgCdTe detector under CW-YAG laser[J]. High Power Laser and Particle Beams, 1998, 10(4): 552-556
    [12] 郑业亮, 胡以华, 赵楠翔, 等. 脉宽及重频对HgCdTe探测器损伤阈值影响分析[J]. 激光技术, 2018, 42(2):265-270. (Zheng Yeliang, Hu Yihua, Zhao Nanxiang, et al. Analysis of the influence of pulse width and repetition frequency on damage threshold of HgCdTe detector[J]. Laser Technology, 2018, 42(2): 265-270 doi: 10.7510/jgjs.issn.1001-3806.2018.02.024
    [13] Wang Xi, Wang Qingsheng, Hu Hongtao, et al. Experimental study of HgCdTe imaging sensor irradiated by pulse CO2 laser[C]//Proceedings of SPIE 10152, High Power Lasers, High Energy Lasers, and Silicon-based Photonic Integration. 2016: 1015202.
    [14] 栗兴良, 牛春晖, 马牧燕, 等. 10.6μm激光辐照碲镉汞红外探测器热损伤研究[J]. 红外技术, 2016, 38(1):6-9,20. (Li Xingliang, Niu Chunhui, Ma Muyan, et al. Research on the thermal damage of HgCdTe infrared detector under laser irradiation of 10.6 μm wavelength[J]. Infrared Technology, 2016, 38(1): 6-9,20 doi: 10.11846/j.issn.1001_8891.201601002
    [15] 褚君浩. 窄禁带半导体物理学[M]. 北京: 科学出版社, 2005

    Chu Junhao. Narrow gap semiconductor physics[M]. Beijing: Science Press, 2005
    [16] 陆启生, 江天, 江厚满, 等. 半导体材料和器件的激光辐照效应[M]. 北京: 国防工业出版社, 2015

    Lu Qisheng, Jiang Tian, Jiang Houman, et al. Laser radiation effects on semiconductor materials and devices[M]. Beijing: National Defense Industry Press, 2015
    [17] Chen J K, Tzou D Y, Beraun J E. Numerical investigation of ultrashort laser damage in semiconductors[J]. International Journal of Heat and Mass Transfer, 2005, 48(3/4): 501-509.
    [18] Seiler D G, McClure S W, Justice R J, et al. Nonlinear optical characterization of Hg1-xCdxTe using two-photon absorption techniques[J]. Journal of Vacuum Science & Technology A, 1986, 4(4): 2034-2039.
    [19] Kinch M A. A theoretical model for the HgCdTe electron avalanche photodiode[J]. Journal of Electronic Materials, 2008, 37(9): 1453-1459. doi: 10.1007/s11664-008-0439-y
    [20] Adachi S. Properties of semiconductor alloys: group-IV, III–V and II–VI semiconductors[M]. Chichester: Wiley, 2009.
    [21] 陈星. 碲镉汞红外焦平面探测器可靠性相关技术研究[D]. 上海: 中国科学院上海技术物理研究所, 2014: 1-18

    Chen Xing. Research on the related technology of HgCdTe infrared focal plane detector reliability[D]. Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2014: 1-18
    [22] Syllaios A J, Liao P K K, Dean B E. Optical absorption coefficient of CdZnTe[C]//Proceedings of SPIE 2274, Infrared Detectors: State of the Art II. 1994: 49-54.
    [23] 邱伟成. 线阵光伏型碲镉汞探测器激光辐照效应若干问题研究[D]. 长沙: 国防科学技术大学, 2012: 12-32

    Qiu Weicheng. Research on the irradiation effects of PV-HgCdTe linear array detector under laser[D]. Changsha: National University of Defense Technology, 2012: 12-32
  • 加载中
图(8)
计量
  • 文章访问数:  803
  • HTML全文浏览量:  501
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-26
  • 修回日期:  2021-12-01
  • 网络出版日期:  2021-12-10
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回