留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率2 µm波长可调谐超短脉冲光纤激光器

宋伟华 彭志刚 侯玉斌 幺鹏 张奕 王璞

宋伟华, 彭志刚, 侯玉斌, 等. 高功率2 µm波长可调谐超短脉冲光纤激光器[J]. 强激光与粒子束, 2022, 34: 031002. doi: 10.11884/HPLPB202234.210325
引用本文: 宋伟华, 彭志刚, 侯玉斌, 等. 高功率2 µm波长可调谐超短脉冲光纤激光器[J]. 强激光与粒子束, 2022, 34: 031002. doi: 10.11884/HPLPB202234.210325
Song Weihua, Peng Zhigang, Hou Yubin, et al. High-power wavelength-tunable ultrashort pulse fiber laser at 2 µm[J]. High Power Laser and Particle Beams, 2022, 34: 031002. doi: 10.11884/HPLPB202234.210325
Citation: Song Weihua, Peng Zhigang, Hou Yubin, et al. High-power wavelength-tunable ultrashort pulse fiber laser at 2 µm[J]. High Power Laser and Particle Beams, 2022, 34: 031002. doi: 10.11884/HPLPB202234.210325

高功率2 µm波长可调谐超短脉冲光纤激光器

doi: 10.11884/HPLPB202234.210325
基金项目: 国家自然科学基金重点项目(62035002)
详细信息
    作者简介:

    宋伟华,swh18434361167@163.com

    通讯作者:

    彭志刚,pzg@bjut.edu.cn

    王 璞,wangpuemail@163.com

  • 中图分类号: TN248

High-power wavelength-tunable ultrashort pulse fiber laser at 2 µm

  • 摘要: 高功率2 µm波长可调谐的超短脉冲激光具有峰值功率高、脉冲宽度窄、波长可调谐等优势,在医疗手术、大气通信、光电对抗等领域具有广泛的应用。利用高峰值功率的掺铒光纤放大器泵浦高非线性光纤,在全光纤化结构中获得了1895~2165 nm可调谐的拉曼孤子输出。采用啁啾脉冲放大技术对拉曼孤子的脉冲能量进行提升,放大后拉曼孤子的单脉冲能量为1.56 µJ,平均功率达到50.6 W,脉冲宽度为83 ps。经过光栅对压缩后,脉冲宽度降低至1.23 ps,平均功率为22 W,峰值功率达到0.55 MW。放大后的脉冲仍具有波长调谐的能力,当输出功率为5 W和50.6 W时,脉冲的波长调谐范围分别为38 nm和8 nm。
  • 图  1  拉曼孤子光源实验装置图

    Figure  1.  Experimental setup of Raman soliton laser

    WDM: wavelength division multiplexer; EDFC: erbium-doped fiber; SESAM: semiconductor saturable absorption mirror; ISO: isolator APC: angled physical contact;SMF-28: single-mode fiber;HNLF: highly nonlinear optical fiber

    图  2  掺铥光纤放大器实验装置图

    Figure  2.  Experimental device diagram of thulium-doped fiber amplifier

    WDM: wavelength division multiplexer; TDF: thulium-doped fiber; DCF: dispersion compensating fiber; ISO: isolator;DM: dichroic mirror

    图  3  掺铒光纤振荡器的脉冲输出特性

    Figure  3.  Pulse output characteristics of erbium-doped fiber oscillator

    图  4  掺铒光纤放大器的脉冲输出特性

    Figure  4.  Pulse output characteristics of erbium-doped fiber amplifier

    图  5  不同泵浦功率下拉曼孤子的输出特性

    Figure  5.  Output characteristics of Raman soliton at different pump power

    图  6  展宽脉冲的光谱和脉宽

    Figure  6.  Optical spectrum and pulse width of broadened pulse

    图  7  不同输出功率下二级包层放大器的输出光谱

    Figure  7.  Output optical spectrum of the second stage cladding amplifier at different output power

    图  8  不同拉曼波长下二级包层放大器的输出光谱

    Figure  8.  Optical spectrum of the second stage cladding amplifier at different Raman wavelengths

    图  9  三级包层放大器输出脉冲的特性

    Figure  9.  Output pulse characteristics of the third stage cladding amplifier

    图  10  压缩脉冲的输出特性

    Figure  10.  Output characteristics of compressed pulse

    表  1  色散管理掺铒光纤振荡器中的光纤参数

    Table  1.   Fiber parameters of the dispersion managed erbium-doped fiber laser

    fiber typedispersion/(ps2/km,@1550 nm)fiber length/mnet dispersion/ps2
    EDFC23.4952.5−0.028
    SMF-28−22.863.8
    下载: 导出CSV
  • [1] Kadwani P, Sims R A, Baudelet M, et al. Atmospheric propagation testing using broadband thulium fiber systems[C]//Fiber Laser Applications 2011. Istanbul: Optical Society of America, 2011.
    [2] Scholle K, Lamrini S, Koopmann P, et al. 2 µm laser sources and their possible applications[M]//Pal B. Frontiers in Guided Wave Optics and Optoelectronics. Vukovar: Intech, 2010.
    [3] Sarp A S K, Gulsoy M. Determining the optimal dose of 1940-nm thulium fiber laser for assisting the endodontic treatment[J]. Lasers in Medical Science, 2017, 32(7): 1507-1516. doi: 10.1007/s10103-017-2272-0
    [4] Hutchens T C, Gonzalez D A, Irby P B, et al. Fiber optic muzzle brake tip for reducing fiber burnback and stone retropulsion during thulium fiber laser lithotripsy[J]. Journal of Biomedical Optics, 2017, 22: 018001. doi: 10.1117/1.JBO.22.1.018001
    [5] Corkum P B. Plasma perspective on strong field multiphoton ionization[J]. Physical Review Letters, 1993, 71(13): 1994-1997. doi: 10.1103/PhysRevLett.71.1994
    [6] Krausz F, Ivanov M. Attosecond physics[J]. Reviews of Modern Physics, 2009, 81(1): 163-234. doi: 10.1103/RevModPhys.81.163
    [7] Sepp G, Protz R. Laser beam source for a directional infrared countermeasures (DIRCM) weapon system: 6587486[P]. 2003-07-01.
    [8] Luo Hongyu, Yang Jian, Li Jianfeng, et al. Tunable sub-300 fs soliton and switchable dual-wavelength pulse generation from a mode-locked fiber oscillator around 2.8 μm[J]. Optics Letters, 2021, 46(4): 841-844. doi: 10.1364/OL.416559
    [9] Qian Kai, Luo Hao, Qiu Da, et al. Broadband and tunable 920-nm femtosecond pulse generated by an all-fiber Er: fiber laser system[J]. IEEE Access, 2021, 9: 29600-29664.
    [10] 张怡静, 刘江, 王璞. 全光纤结构波长可调谐被动锁模掺铥光纤激光器[J]. 中国激光, 2018, 45:1001003. (Zhang Yijing, Liu Jiang, Wang Pu. All-fiber wavelength-tunable passively mode-locked thulium-doped fiber laser[J]. Chinese Journal of Lasers, 2018, 45: 1001003 doi: 10.3788/CJL201845.1001003
    [11] Dai Ruihong, Meng Yafei, Li Yao, et al. Nanotube mode-locked, wavelength and pulsewidth tunable thulium fiber laser[J]. Optics Express, 2019, 27(3): 3518-3527. doi: 10.1364/OE.27.003518
    [12] Yao Chuanfei, Zhao Zhipeng, Jia Zhixu, et al. Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber[J]. Applied Physics Letters, 2016, 109: 101102. doi: 10.1063/1.4962391
    [13] Wang Peng, Shi Hongxing, Tan Fangzhou, et al. Tunable femtosecond pulse source from 1.6 to 2.3 μm with 100 kW peak power in an all-fiber system[J]. Chinese Optics Letters, 2016, 14: 091405. doi: 10.3788/COL201614.091405
    [14] Hua Yi, Zhou Gengji, Liu Wei, et al. Femtosecond two-color source synchronized at 100-as-precision based on SPM-enabled spectral selection[J]. Optics Letters, 2020, 45(13): 3410-3413. doi: 10.1364/OL.391161
    [15] Wang Peng, Shi Hongxing, Tan Fangzhou, et al. Enhanced tunable Raman soliton source between 1.9 and 2.36 μm in a Tm-doped fiber amplifier[J]. Optics Express, 2017, 25(14): 16643-16651. doi: 10.1364/OE.25.016643
    [16] Li Yanhong, Du Tuanjie, Xu Bin, et al. Compact all-fiber 2.1-2.7 μm tunable Raman soliton source based on germania-core fiber[J]. Optics Express, 2019, 27(20): 28544-28550. doi: 10.1364/OE.27.028544
    [17] Liu Fei, Li Jianfeng, Luo Hongyu, et al. Study on soliton self-frequency shift in a Tm-doped fiber amplifier seeded by a Kelly-sideband-suppressed conventional soliton[J]. Optics Express, 2021, 29(5): 6553-6562. doi: 10.1364/OE.412345
    [18] Liu Lai, Tian Qijun, Liao Meisong, et al. All-optical control of group velocity dispersion in tellurite photonic crystal fibers[J]. Optics Letters, 2012, 37(24): 5124-5126. doi: 10.1364/OL.37.005124
    [19] Li Zhenrui, Li Nan, Yao Chuanfei, et al. Tunable mid-infrared Raman soliton generation from 1.96 to 2.82 μm in an all-solid fluorotellurite fiber[J]. AIP Advances, 2018, 8: 115001. doi: 10.1063/1.5042137
    [20] Cheng Tonglei, Kanou Y, Asano K, et al. Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber[J]. Applied Physics Letters, 2014, 104: 121911. doi: 10.1063/1.4869756
    [21] Tang Yuxing, Wright L G, Charan K, et al. Generation of intense 100 fs solitons tunable from 2 to 4.3 μm in fluoride fiber[J]. Optica, 2016, 3(9): 948-951. doi: 10.1364/OPTICA.3.000948
    [22] Klimentov D, Dvoyrin V V, Tolstik N, et al. Raman soliton fiber lasers tunable between 1.98-2.22 µm[C]//Mid-Infrared Coherent Sources 2016. Long Beach: Optical Society of America, 2016.
    [23] Tan Fangzhou, Shi Hongxing, Sun Ruoyu, et al. 1 μJ, sub-300 fs pulse generation from a compact thulium-doped chirped pulse amplifier seeded by Raman shifted erbium-doped fiber laser[J]. Optics Express, 2016, 24(20): 22461-22468. doi: 10.1364/OE.24.022461
    [24] Fermann M E, Andrejco M J, Stock M L, et al. Passive mode locking in erbium fiber lasers with negative group delay[J]. Applied Physics Letters, 1993, 62(9): 910-912. doi: 10.1063/1.108516
    [25] Herrmann J, Kalosha V P, Müller M. Higher-order phase dispersion in femtosecond Kerr-lens mode-locked solid-state lasers: sideband generation and pulse splitting[J]. Optics Letters, 1997, 22(4): 236-238. doi: 10.1364/OL.22.000236
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  2289
  • HTML全文浏览量:  453
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-27
  • 修回日期:  2021-09-26
  • 网络出版日期:  2021-10-12
  • 刊出日期:  2022-01-13

目录

    /

    返回文章
    返回