留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率连续光纤激光系统热效应及其抑制措施

林傲祥 彭昆 俞娟 倪力 戴晓军 向恒

林傲祥, 彭昆, 俞娟, 等. 高功率连续光纤激光系统热效应及其抑制措施[J]. 强激光与粒子束, 2022, 34: 011005. doi: 10.11884/HPLPB202234.210336
引用本文: 林傲祥, 彭昆, 俞娟, 等. 高功率连续光纤激光系统热效应及其抑制措施[J]. 强激光与粒子束, 2022, 34: 011005. doi: 10.11884/HPLPB202234.210336
Lin Aoxiang, Peng Kun, Yu Juan, et al. Thermal effect and its suppression in high-power continuous-wave fiber laser system[J]. High Power Laser and Particle Beams, 2022, 34: 011005. doi: 10.11884/HPLPB202234.210336
Citation: Lin Aoxiang, Peng Kun, Yu Juan, et al. Thermal effect and its suppression in high-power continuous-wave fiber laser system[J]. High Power Laser and Particle Beams, 2022, 34: 011005. doi: 10.11884/HPLPB202234.210336

高功率连续光纤激光系统热效应及其抑制措施

doi: 10.11884/HPLPB202234.210336
基金项目: 光纤激光技术所级重大专项
详细信息
    作者简介:

    林傲祥,linaoxiang@caep.cn

  • 中图分类号: TN248

Thermal effect and its suppression in high-power continuous-wave fiber laser system

  • 摘要: 热效应是影响高功率光纤激光系统安全运行的重要因素之一。探索光纤激光系统热效应产生的源头,积极开展热效应控制技术研究,采取合理措施抑制热集中现象,大幅提高光纤激光系统的模式不稳定阈值以避免模式劣化现象,对于进一步提升光纤激光系统安全稳定输出功率具有非常重要的现实意义。以广泛使用的端面集中泵浦技术为例,概述了高功率连续光纤激光系统的主要热效应来源,提出了针对不同热效应需要采取的解决方案与合理化建议。最后着重介绍了长距离分布式侧面泵浦技术和泵浦增益一体化复合功能激光光纤,展望了万瓦级超高功率光纤激光器的未来发展前景。
  • 图  1  常规谐振腔结构的光纤激光器发热区域

    Figure  1.  Thermal effects in fiber laser oscillator

    图  2  MOPA结构光纤光纤激光器系统发热位置

    Figure  2.  Thermal effects in MOPA configuration

    图  3  模式不稳定阈值前(a),模式不稳定阈值后(b)[25]

    Figure  3.  Beam spats before mode instability threshold(a) and after the system reached mode instability threshold(b)[25]

    图  4  光纤冷却凹槽的不同结构[44]

    Figure  4.  Different kinds of fiber colling groove structures[44]

    图  5  国产LMA-48/400-YDF激光光纤采用1018 nm同带泵浦实现20 kW激光输出[8]

    Figure  5.  20 kW laser output of local LMA-48/400-YDF fiber by 1018 nm-tandem-pumping[8]

    图  6  氟层辅助三包层光纤的基本结构

    Figure  6.  F-layer assisted triple-clad laser fiber

    图  7  氟层辅助三包层高功率光纤激光系统[49]

    Figure  7.  High-power laser system using F-layer-assisted triple-clad fiber[49]

    图  8  美国IPG公司10kW侧面泵浦光纤激光方案[56]

    Figure  8.  10kW-level side pumping technique of IPG company, USA[56]

    图  9  GTwave级联光纤激光振荡器[72]

    Figure  9.  Configuration of GTwave cascaded fiber oscillator[72]

    图  10  (8+1)型泵浦增益一体化复合功能激光光纤:(a)实物端面示意图; (b)泵浦耦合示意图[5-6]

    Figure  10.  (8+1) Pump gain Integrated Functional Laser (PIFL) fiber: (a) end cross-section; (b) pump-coupling method[5-6]

    图  11  万瓦级(8+1)型PIFL光纤的现场测试数据:(a) 信号输出功率及功率示数示意图;(b) 激光光谱[5-6]

    Figure  11.  (8+1) PIFL fiber laser: (a) output signal power and optical-to-optical efficiency; (b) laser beam spectrum[5-6]

    图  12  10 kW级PIFL光纤激光系统结构[5-6]

    Figure  12.  10 kW-level PIFL fiber laser configuration[5-6]

    图  13  PIFL光纤纵向的(a)包层泵浦吸收和(b)热分布及实测表面温度[71]

    Figure  13.  (a) absorption evolution; (b) temperature distribution of core region and polymer clad along PIFL fiber[71]

    图  14  (8+1)型PIFL谐振腔激光结构[76]

    Figure  14.  (8+1) PIFL oscillator structure[76]

  • [1] Koester C J, Snitzer E. Amplification in a fiber laser[J]. Applied Optics, 1964, 3(10): 1182-1186. doi: 10.1364/AO.3.001182
    [2] Jeong Y, Sahu J K, Payne D N, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Optics Express, 2004, 12(25): 6088-6092. doi: 10.1364/OPEX.12.006088
    [3] O'Connor M, Gapontsev V, Fomin V, et al. Power scaling of SM fiber lasers toward 10kW[C]//Conference on Lasers and Electro-Optics 2009. Optical Society of America, 2009: CThA3.
    [4] Shiner B. The impact of fiber laser technology on the world wide material processing market[C]//CLEO: Applications and Technology 2013. Optical Society of America, 2013: AF2J. 1.
    [5] Zhan H, Peng K, Liu S, et al. Pump-gain integrated functional laser fiber towards 10 kW-level high-power applications[J]. Laser Physics Letters, 2018, 15: 095107. doi: 10.1088/1612-202X/aad28b
    [6] 林傲祥, 湛欢, 彭昆, 等. 国产复合功能光纤实现万瓦激光输出[J]. 强激光与粒子束, 2018, 30:060101. (Lin Aoxiang, Zhan Huan, Peng Kun, et al. 10 kW-level pump-gain integrated functional laser fiber[J]. High Power Laser and Particle Beams, 2018, 30: 060101 doi: 10.11884/HPLPB201830.180110
    [7] 陈晓龙, 楼风光, 何宇, 等. 高效率全国产化10 kW光纤激光器[J]. 光学学报, 2019, 39:0336001. (Chen Xiaolong, Lou Fengguang, He Yu, et al. Home-made 10 kW fiber laser with high efficiency[J]. Acta Optica Sinica, 2019, 39: 0336001 doi: 10.3788/AOS201939.0336001
    [8] 林傲祥, 肖起榕, 倪力, 等. 国产YDF有源光纤实现单纤20 kW激光输出[J]. 中国激光, 2021, 48:0916003. (Lin Aoxiang, Xiao Qirong, Ni Li, et al. Single-fiber 20kW laser output of domestic YDF active fiber[J]. Chinese Journal of Lasers, 2021, 48: 0916003
    [9] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867. doi: 10.1038/nphoton.2013.273
    [10] Brown D C, Hoffman H J. Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers[J]. IEEE Journal of Quantum Electronics, 2001, 37(2): 207-217. doi: 10.1109/3.903070
    [11] Brilliant N A, Lagonik K. Thermal effects in a dual-clad ytterbium fiber laser[J]. Optics Letters, 2001, 26(21): 1669-1671. doi: 10.1364/OL.26.001669
    [12] Canat G, Mollier J C, Jaouën Y, et al. Evidence of thermal effects in a high-power Er 3+–Yb 3+ fiber laser[J]. Optics Letters, 2005, 30(22): 3030-3032. doi: 10.1364/OL.30.003030
    [13] Beier F, Heinzig M, Walbaum T, et al. Determination of thermal load from core temperature measurements in single mode ytterbium-doped fiber amplifiers[C]//Advanced Solid State Lasers. Optical Society of America, 2015: ATh2A. 23.
    [14] 薛冬, 周军, 楼祺洪, 等. 高功率双包层光纤激光器热效应及功率极限[J]. 强激光与粒子束, 2009, 21(7):1013-1018. (Xue Dong, Zhou Jun, Lou Qihong, et al. Thermal effect and power limit in high power double-clad fiber laser[J]. High Power Laser and Particle Beams, 2009, 21(7): 1013-1018
    [15] Fan Yuanyuan, He Bing, Zhou Jun, et al. Thermal effects in kilowatt all-fiber MOPA[J]. Optics Express, 2011, 19(16): 15162-15172. doi: 10.1364/OE.19.015162
    [16] 韩旭, 冯国英, 韩敬华, 等. 高功率掺镱双包层光纤激光器中光纤损伤及其理论分析[J]. 光子学报, 2009, 38(10):2468-2472. (Han Xu, Feng Guoying, Han Jinghua, et al. Fiber damage and theoretical analyses for high power Yb-doped double-clad fiber laser[J]. Acta Photonica Sinica, 2009, 38(10): 2468-2472
    [17] 胡志涛, 何兵, 周军, 等. 高功率光纤激光器热效应的研究进展[J]. 激光与光电子学进展, 2016, 53(8):8-18. (Hu Zhitao, He Bing, Zhou Jun, et al. Research progress in thermal effect of high power fiber lasers[J]. Laser & Optoelectronics Progress, 2016, 53(8): 8-18
    [18] Ter-Mikirtychev V. Fundamentals of fiber lasers and fiber amplifiers[M]. Cham: Springer, 2019.
    [19] Paschotta R, Nilsson J, Barber P R, et al. Lifetime quenching in Yb-doped fibres[J]. Optics Communications, 1997, 136(5/6): 375-378.
    [20] Jelger P, Engholm M, Norin L, et al. Degradation-resistant lasing at 980 nm in a Yb/Ce/Al-doped silica fiber[J]. Journal of the Optical Society of America B, 2010, 27(2): 338-342. doi: 10.1364/JOSAB.27.000338
    [21] Li Nanxi, Yoo S, Yu Xia, et al. Pump power depreciation by photodarkening in ytterbium-doped fibers and amplifiers[J]. IEEE Photonics Technology Letters, 2014, 26(2): 115-118. doi: 10.1109/LPT.2013.2289965
    [22] 朱宗玖, 许立新, 毛庆和, 等. 高掺杂浓度掺镱光纤的光子暗化效应[J]. 光子学报, 2007, 36(1):26-29. (Zhu Zongjiu, Xu Lixin, Mao Qinghe, et al. Photodarkening in ytterbium-doped fiber with high doping concentration[J]. Acta Photonica Sinica, 2007, 36(1): 26-29
    [23] Chen Gui, Xie Lu, Wang Yibo, et al. Photodarkening-induced absorption and fluorescence changes in Yb fibers[J]. Chinese Physics Letters, 2013, 30: 104208. doi: 10.1088/0256-307X/30/10/104208
    [24] 李海清, 陈瑰, 王一礴, 等. 光纤中光子暗化效应研究[J]. 光学与光电技术, 2014, 12(4):26-30. (Li Haiqing, Chen Gui, Wang Yibo, et al. Study on the photo-darkening in fiber[J]. Optics & Optoelectronic Technology, 2014, 12(4): 26-30
    [25] 尤洁, 于海龙, 王小林, 等. 掺稀土光纤的光子暗化研究进展[J]. 激光与光电子学进展, 2014, 51:010003. (You Jie, Yu Hailong, Wang Xiaolin, et al. Advance in study on photodarkening of rare-earth doped fibers[J]. Laser & Optoelectronics Progress, 2014, 51: 010003
    [26] Jeong Y, Baek S, Dupriez P, et al. Thermal characteristics of an end-pumped high-power ytterbium-sensitized erbium-doped fiber laser under natural convection[J]. Optics Express, 2008, 16(24): 19865-19871. doi: 10.1364/OE.16.019865
    [27] Hansen K R, Alkeskjold T T, Broeng J, et al. Thermo-optical effects in high-power Ytterbium-doped fiber amplifiers[J]. Optics Express, 2011, 19(24): 23965-23980. doi: 10.1364/OE.19.023965
    [28] Eidam T, Hanf S, Seise E, et al. Femtosecond fiber CPA system emitting 830 W average output power[J]. Optics Letters, 2010, 35(2): 94-96. doi: 10.1364/OL.35.000094
    [29] Wirth C, Schmidt O, Tsybin I, et al. High average power spectral beam combining of four fiber amplifiers to 8.2kW[J]. Optics Letters, 2011, 36(16): 3118-3120. doi: 10.1364/OL.36.003118
    [30] Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224. doi: 10.1364/OE.19.013218
    [31] Otto H J, Stutzki F, Jansen F, et al. Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers[J]. Optics Express, 2012, 20(14): 15710-15722. doi: 10.1364/OE.20.015710
    [32] Stutzki F, Otto H J, Jansen F, et al. High-speed modal decomposition of mode instabilities in high-power fiber lasers[J]. Optics Letters, 2011, 36(23): 4572-4574. doi: 10.1364/OL.36.004572
    [33] Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. Study of mode instabilities in high power fiber amplifiers by detecting scattering light[C]//Fiber-Based Technologies and Applications 2014. Optical Society of America, 2014: FTh2F. 2.
    [34] 陶汝茂, 周朴, 肖虎, 等. 高功率光纤激光中模式不稳定性现象研究进展[J]. 激光与光电子学进展, 2014, 51:020001. (Tao Rumao, Zhou Pu, Xiao Hu, et al. Progress of study on mode instability in high power fiber amplifiers[J]. Laser & Optoelectronics Progress, 2014, 51: 020001
    [35] 史尘, 陶汝茂, 王小林, 等. 光纤激光模式不稳定的新现象与新进展[J]. 中国激光, 2017, 44:0201004. (Shi Chen, Tao Rumao, Wang Xiaolin, et al. New progress and phenomena of modal instability in fiber lasers[J]. Chinese Journal of Lasers, 2017, 44: 0201004 doi: 10.3788/CJL201744.0201004
    [36] Hejaz K, Shayganmanesh M, Rezaei-Nasirabad R, et al. Modal instability induced by stimulated Raman scattering in high-power Yb-doped fiber amplifiers[J]. Optics Letters, 2017, 42(24): 5274-5277. doi: 10.1364/OL.42.005274
    [37] Smith A V, Smith J J. Mode instability thresholds of fiber amplifiers[C]//Proceedings of SPIE 8601, Fiber Lasers X: Technology, Systems, and Applications. SPIE, 2013: 860108.
    [38] Brar K, Savage-Leuchs M, Henrie J, et al. Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers[C]//Proceedings of SPIE 8961, Fiber Lasers XI: Technology, Systems, and Applications. SPIE, 2014: 89611R.
    [39] Otto H J, Modsching N, Jauregui C, et al. Wavelength dependence of maximal diffraction-limited output power of fiber lasers[C]//Advanced Solid State Lasers 2014. Optical Society of America, 2014: AM5A. 44.
    [40] Hejaz K, Norouzey A, Poozesh R, et al. Controlling mode instability in a 500 W ytterbium-doped fiber laser[J]. Laser Physics, 2014, 24: 025102. doi: 10.1088/1054-660X/24/2/025102
    [41] 陈爽, 冯莹. 高功率光子晶体光纤激光器温度分布研究[J]. 光子学报, 2008, 37(6):1134-1138. (Chen Shuang, Feng Ying. Temperature distribution in high power photonic crystal Fiber Laser[J]. Acta Photonica Sinica, 2008, 37(6): 1134-1138
    [42] Fey A, Ulrich S, Jahn S, et al. Numerical analysis of temperature distribution during laser deep welding of duplex stainless steel using a two-beam method[J]. Welding in the World, 2020, 64(4): 623-632. doi: 10.1007/s40194-020-00857-8
    [43] Fan Yuanyuan, He Bing, Zhou Jun, et al. Efficient heat transfer in high-power fiber lasers[J]. Chinese Optics Letters, 2012, 10(11): 111401. doi: 10.3788/COL201210.111401
    [44] 代守军, 何兵, 周军, 等. 高功率散热技术及高功率光纤激光放大器[J]. 中国激光, 2013, 40:0502003. (Dai Shoujun, He Bing, Zhou Jun, et al. Cooling technology of high-power and high-power fiber laser amplifier[J]. Chinese Journal of Lasers, 2013, 40: 0502003 doi: 10.3788/CJL201340.0502003
    [45] Li L, Li H, Qiu T, et al. 3-dimensional thermal analysis and active cooling of short-length high-power fiber lasers[J]. Optics Express, 2005, 13(9): 3420-3428. doi: 10.1364/OPEX.13.003420
    [46] Liu Shuang, Zhan Huan, Peng Kun, et al. Fabrication and laser performance of triple-clad Yb-doped aluminophosphosilicate fiber[J]. Optical Fiber Technology, 2018, 46: 297-301. doi: 10.1016/j.yofte.2018.10.021
    [47] Laperle P, Paré C, Zheng Huimin, et al. Yb-doped LMA triple-clad fiber for power amplifiers[C]//Proceedings of SPIE 6453, Fiber Lasers IV: Technology, Systems, and Applications. SPIE, 2007: 645308.
    [48] Kalyoncu S K, Mete B, Yenıay A. Diode-pumped triple-clad fiber MOPA with an output power scaling up to 4.67 kW[J]. Optics Letters, 2020, 45(7): 1870-1873. doi: 10.1364/OL.387230
    [49] 张磊, 楼风光, 王孟, 等. 同带泵浦的万瓦级三包层掺镱光纤[J]. 中国激光, 2021, 48:1315001. (Zhang Lei, Lou Fengguang, Wang Meng, et al. Yb-doped triple-clad fiber for nearly 10 kW level tandem-pumped output[J]. Chinese Journal of Lasers, 2021, 48: 1315001 doi: 10.3788/CJL202148.1315001
    [50] 黄值河, 曹涧秋, 陈金宝. 高功率GTWave光纤激光器研究进展[J]. 中国激光, 2021, 48:0401010. (Huang Zhihe, Cao Jianqiu, Chen Jinbao. Research progress on high-power GTWave fiber lasers[J]. Chinese Journal of Lasers, 2021, 48: 0401010 doi: 10.3788/CJL202148.0401010
    [51] Ripin D J, Goldberg L. High efficiency side-coupling of light into optical fibres using imbedded v-grooves[J]. Electronics Letters, 1995, 31(25): 2204-2205. doi: 10.1049/el:19951429
    [52] Koplow J P, Moore S W, Kliner D A V. A new method for side pumping of double-clad fiber sources[J]. IEEE Journal of Quantum Electronics, 2003, 39(4): 529-540. doi: 10.1109/JQE.2003.809336
    [53] Hakimi F, Hakimi H. Side pumped optical amplifiers and lasers: 6370297[P]. 2002-04-09.
    [54] Herda R, Liem A, Schnabel B, et al. Efficient side-pumping of fibre lasers using binary gold diffraction gratings[J]. Electronics Letters, 2003, 39(3): 276-277. doi: 10.1049/el:20030194
    [55] Codemard C, Yla-Jarkko K, Singleton J, et al. Low noise, intelligent cladding pumped L-band EDFA[C]//Proceedings of the 28th European Conference on Optical Communication. IEEE, 2002: 1-2.
    [56] Norman S, Zervas M N, Appleyard A, et al. Latest development of high-power fiber lasers in SPI[C]//Proceedings of SPIE 5335, Fiber Lasers: Technology, Systems, and Applications. SPIE, 2004: 229-237.
    [57] Gapontsev V, Gapontsev D, Platonov N, et al. 2 kW CW ytterbium fiber laser with record diffraction-limited brightness[C]//Proceedings of 2005 Conference on Lasers and Electro-Optics Europe. IEEE, 2005: 508.
    [58] Stiles E. New developments in IPG fiber laser technology[C]//Proceedings of the 5th International Workshop on Fiber Lasers. 2009: 2.
    [59] Ferin A, Gapontsev V, Fomin V, et al. 17 kW CW laser with 50 µm delivery[C]//Proceedings of the 6th Int. Symp. on High-Power Fiber Lasers and Their Applications, IPG Photonics Corporation. 2012.
    [60] Huang Zhihe, Cao Jianqiu, Guo Shaofeng, et al. The characteristics of pump light in side-coupled cladding-pumped fibers[J]. Optical Fiber Technology, 2013, 19(4): 293-297. doi: 10.1016/j.yofte.2013.03.002
    [61] Huang Zhihe, Cao Jianqiu, Guo Shaofeng, et al. Comparison of fiber lasers based on distributed side-coupled cladding-pumped fibers and double-cladding fibers[J]. Applied Optics, 2014, 53(10): 2187-2195. doi: 10.1364/AO.53.002187
    [62] Huang Zhihe, Cao Jianqiu, An Yingye, et al. A kilowatt all-fiber cascaded amplifier[J]. IEEE Photonics Technology Letters, 2015, 27(16): 1683-1686. doi: 10.1109/LPT.2015.2426191
    [63] 陈金宝, 曹涧秋, 潘志勇, 等. 全国产分布式侧面抽运光纤激光器实现千瓦输出[J]. 中国激光, 2015, 42:0219002. (Chen Jinbao, Cao Jianqiu, Pan Zhiyong, et al. Domestic kW-level output of distributed side pumped fiber laser[J]. Chinese Journal of Lasers, 2015, 42: 0219002 doi: 10.3788/CJL201542.0219002
    [64] Ying Hanyuan, Yu Yu, Cao Jianqiu, et al. 2 kW pump-light-stripper-free distributed side-coupled cladding-pumped fiber oscillator[J]. Laser Physics Letters, 2017, 14: 065102. doi: 10.1088/1612-202X/aa6dc8
    [65] 陈金宝, 曹涧秋, 潘志勇, 等. 基于国产光纤的多级级联分布式侧面抽运光纤振荡器实现2kW的功率输出[J]. 中国激光, 2017, 44:0415002. (Chen Jinbao, Cao Jianqiu, Pan Zhiyong, et al. 2kW multistage cascade distributed side-pumped optical fiber oscillator based on domestic optical fiber[J]. Chinese Journal of Lasers, 2017, 44: 0415002 doi: 10.3788/CJL201744.0415002
    [66] 陈金宝, 曹涧秋, 黄值河, 等. 基于国产光纤的多级级联分布式侧面抽运光纤振荡器实现强拉曼抑制的3 kW量级功率输出[J]. 中国激光, 2018, 45:0315002. (Chen Jinbao, Cao Jianqiu, Huang Zhihe, et al. 3 kW laser output of multistage cascaded distributed side pumped fiber oscillator based on domestic optical fiber with strong Raman suppression[J]. Chinese Journal of Lasers, 2018, 45: 0315002 doi: 10.3788/CJL201845.0315002
    [67] Chen Heng, Cao Jianqiu, Huang Zhihe, et al. 3-kilowatt all-fiber distributed side-pumped oscillator with high SRS suppression[C]//Proceedings of 2018 Asia Communications and Photonics Conference (ACP). 2018.
    [68] Chen Heng, Cao Jianqiu, Huang Zhihe, et al. Experimental investigations on multi-kilowatt all-fiber distributed side-pumped oscillators[J]. Laser Physics, 2019, 29: 075103. doi: 10.1088/1555-6611/ab1de4
    [69] 陈霄, 肖起榕, 金光勇, 等. 光纤激光器侧面泵浦(N+1)×1耦合器泵浦臂数量[J]. 红外与毫米波学报, 2016, 35(2):190-193. (Chen Xiao, Xiao Qirong, Jin Guangyong, et al. The pump arm numbers of (N+1)×1 couplers[J]. Journal of Infrared and Millimeter Waves, 2016, 35(2): 190-193 doi: 10.11972/j.issn.1001-9014.2016.02.012
    [70] Zhan Huan, Wang Yuying, Peng Kun, et al. 2 kW (2+ 1) GT-wave fiber amplifier[J]. Laser Physics Letters, 2016, 13: 045103. doi: 10.1088/1612-2011/13/4/045103
    [71] Zhan Huan, Liu Qinyong, Wang Yuying, et al. 5kW GTWave fiber amplifier directly pumped by commercial 976nm laser diodes[J]. Optics Express, 2016, 24(24): 27087-27095. doi: 10.1364/OE.24.027087
    [72] Zhan Huan, Peng Kun, Wang Yuying, et al. 6kW GTWave fiber amplifier[C]//Asia Communications and Photonics Conference 2017. Optical Society of America, 2017: M1A. 3.
    [73] Lin Aoxiang, Zhan Huan, Peng Kun, et al. 10 kW-level pump-gain integrated functional laser fiber[C]//Proceedings of 2018 Asia Communications and Photonics Conference (ACP). IEEE, 2018: 1-3.
    [74] Chen Heng, Cao Jianqiu, Huang Zhihe, et al. 4-kilowatt all-fiber distributed side-pumped oscillators[C]//Advanced Solid State Lasers 2018. Optical Society of America, 2018: AM6A. 18.
    [75] 余宇, 黄值河, 曹涧秋, 等. 双向分布式侧面抽运单模光纤放大器的实验研究[J]. 激光与光电子学进展, 2016, 53(7):108-112. (Yu Yu, Huang Zhihe, Cao Jianqiu, et al. Experimental study on bidirectional distributed side-pumped single mode optical fiber amplifiers[J]. Laser & Optoelectronics Progress, 2016, 53(7): 108-112
    [76] Peng Kun, Zhan Huan, Wang Xiaolong, et al. (8+1) pump-gain integrated functional fiber oscillator[C]//Asia Communications and Photonics Conference 2018. Optical Society of America, 2018: Su1A. 3.
  • 加载中
图(14)
计量
  • 文章访问数:  1591
  • HTML全文浏览量:  597
  • PDF下载量:  374
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-31
  • 修回日期:  2021-12-15
  • 网络出版日期:  2021-12-13
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回