留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于双环差分结构的脉冲磁场传感器

王可 段艳涛 石立华 张琪 扶庆枫

王可, 段艳涛, 石立华, 等. 一种基于双环差分结构的脉冲磁场传感器[J]. 强激光与粒子束, 2022, 34: 043003. doi: 10.11884/HPLPB202234.210337
引用本文: 王可, 段艳涛, 石立华, 等. 一种基于双环差分结构的脉冲磁场传感器[J]. 强激光与粒子束, 2022, 34: 043003. doi: 10.11884/HPLPB202234.210337
Wang Ke, Duan Yantao, Shi Lihua, et al. A pulsed magnetic field sensor based on dual-loop differential structure[J]. High Power Laser and Particle Beams, 2022, 34: 043003. doi: 10.11884/HPLPB202234.210337
Citation: Wang Ke, Duan Yantao, Shi Lihua, et al. A pulsed magnetic field sensor based on dual-loop differential structure[J]. High Power Laser and Particle Beams, 2022, 34: 043003. doi: 10.11884/HPLPB202234.210337

一种基于双环差分结构的脉冲磁场传感器

doi: 10.11884/HPLPB202234.210337
基金项目: 国家自然科学基金项目(52005509);江苏省自然科学基金项目(BK20200586)
详细信息
    作者简介:

    王 可,wk4emp@qq.com

    通讯作者:

    段艳涛,dcmchdyt@126.com

  • 中图分类号: TM937.1

A pulsed magnetic field sensor based on dual-loop differential structure

  • 摘要: 雷击近场等强电场环境下的磁场测量是电磁脉冲测量技术中的难点之一,由于输出端结构的径向非对称性,传统的环天线很难避免电场干扰。针对于此,研制了一种基于双环差分结构的脉冲磁场传感器,该传感器由双环天线和光传输系统组成。根据近场电磁场量的分布特性,双环天线选择平行镜像对称放置的方式,从而能够将终端电压区分为磁场响应分量和电场响应分量,再通过末端差分电路即可去除电场响应分量,得到纯净的磁场响应分量。试验表明,在邻近雷击环境模拟装置中,双环传感器相较于单环传感器具备更强的抗电场干扰能力,能够实现磁场的准确测量。
  • 图  1  磁偶极子天线等效电路

    Figure  1.  Equivalent circuit of single loop magnetic field sensor

    图  2  双环差分原理示意图

    Figure  2.  Schematic diagram of dual-loop differential principle

    图  3  双环式差分磁场传感器

    Figure  3.  Dual-loop differential magnetic field sensor

    图  4  双环天线互扰分析示意图

    Figure  4.  Mutual interference analysis of dual-loop antenna

    图  5  邻近雷击环境模拟装置

    Figure  5.  Mutual interference analysis of dual-loop antenna

    图  6  磁场测量结果对比图

    Figure  6.  Comparison of magnetic field measurement results

    表  1  仿真结果

    Table  1.   Results of simulation

    L/cmεu/%εt/%ε/%
    110.522.5813.11
    34.632.206.83
    53.271.774.45
    70.781.512.29
    90.631.442.07
    下载: 导出CSV
  • [1] 潘启军, 马伟明, 赵治华, 等. 磁场测量方法的发展及应用[J]. 电工技术学报, 2005, 20(3):7-13. (Pan Qiming, Ma Weiming, Zhao Zhihua, et al. Development and application of measurement method for magnetic field[J]. Transactions of China Electrotechnical Society, 2005, 20(3): 7-13 doi: 10.3321/j.issn:1000-6753.2005.03.002
    [2] 闫哲, 毕晓亮, 杨嘉祥. 电磁脉冲模拟器电磁场计算[J]. 强激光与粒子束, 2009, 21(2):249-254. (Yan Zhe, Bi Xiaoliang, Yang Jiaxiang. Electromagneitc field calculation of electromagnetic pulse simulator[J]. High Power Laser and Particle Beams, 2009, 21(2): 249-254
    [3] 王伟, 石跃武, 聂鑫, 等. 快前沿脉冲磁场测量系统研制[J]. 高电压技术, 2020, 46(6):2209-2218. (Wang Wei, Shi Yuewu, Nie Xin, et al. Development of magnetic field measuring system for fast risetime pulse[J]. High Voltage Engineering, 2020, 46(6): 2209-2218
    [4] 曹荣刚, 邹军, 袁建生. 脉冲功率电源辐射电磁场测量与分析[J]. 强激光与粒子束, 2009, 21(9):1426-1430. (Cao Ronggang, Zou Jun, Yuan Jiansheng. Measurement and analysis of EMF around pulsed power supplies[J]. High Power Laser and Particle Beams, 2009, 21(9): 1426-1430
    [5] Weiss R, Itzke A, Reitenspieß J, et al. A novel closed loop current sensor based on a circular array of magnetic field sensors[J]. IEEE Sensors Journal, 2019, 19(7): 2517-2524. doi: 10.1109/JSEN.2018.2887302
    [6] Lenz J, Edelstein S. Magnetic sensors and their applications[J]. IEEE Sensors Journal, 2006, 6(3): 631-649. doi: 10.1109/JSEN.2006.874493
    [7] 中国电子产品可靠性与环境试验研究所: 差分磁场探头, 201910092916.7[P]. 2019-04-19

    CEPREI: Differential magnetic field probe, 2019-04-19
    [8] 周璧华, 陈彬, 石立华. 电磁脉冲及其工程防护[M]. 北京: 国防工业出版社, 2003

    Zhou Bihua, Chen Bin, Shi Lihua. EMP and EMP protection. Beijing: National Defense Industry Press, 2003
    [9] 王莹. 脉冲功率科学与技术[M]. 北京: 北京航空航天大学出版社, 2010

    Wang Ying. Science and technology on pulsed power. Beijing: Beihang University Press, 2010
    [10] 张海霞, 赵英俊, 杨叔子. 脉冲磁场传感器的理论计算与检测[J]. 仪表技术与传感器, 1997(6):8-11. (Zhang Haixia, Zhao Yingjun, Yang Shuzi. Theoretical calculation and pick-up method of induction magnetic sensors[J]. Instrument Technique and Sensor, 1997(6): 8-11
    [11] 梁可道, 米彦, 李成祥, 等. ns级脉冲磁场传感器的研制[J]. 高电压技术, 2009, 35(8):1994-1999. (Liang Kedao, Mi Yan, Li Chengxiang, et al. Development of a nanosecond pulsed magnetic field sensor[J]. High Voltage Engineering, 2009, 35(8): 1994-1999
    [12] 孔旭, 谢彦召. 基于光纤技术的电磁脉冲3维电、磁场测量系统[J]. 高电压技术, 2015, 41(1):339-345. (Kong Xu, Xie Yanzhao. Electric field and magnetic field measuring system for EMP measurement based on fiber technology[J]. High Voltage Engineering, 2015, 41(1): 339-345
    [13] 李炎新, 石立华, 高成, 等. 用宽带模拟量光纤传输系统测量脉冲电磁场[J]. 高电压技术, 2006, 32(2):34-36. (Li Yanxin, Shi Lihua, Gao Cheng, et al. Measurement of pulse electromagnetic field using wide band fiber optic analogue transmission system[J]. High Voltage Engineering, 2006, 32(2): 34-36 doi: 10.3969/j.issn.1003-6520.2006.02.012
    [14] 梁猛, 刘崇琪, 杨祎. 光纤通信[M]. 北京: 人民邮电出版社, 2015

    Liang Meng, Liu Congqi, Yang Yi. Optical fiber communications. Beijing: Posts and Telecom Press, 2015
    [15] GJB 1389A-2005: 系统电磁兼容性要求[S]

    GJB 1389A-2005: System electromagnetic compatibility requirements[S]
    [16] 王可, 段艳涛, 石立华, 等. 邻近雷击电场环境模拟装置的设计与实现[J]. 中国舰船研究, 2019, 14(5):119-123. (Wang Ke, Duan Yantao, Shi Lihua, et al. Design and realization of a nearby lightning-electric field environment simulator[J]. Chinese Journal of Ship Research, 2019, 14(5): 119-123
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  699
  • HTML全文浏览量:  416
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-31
  • 修回日期:  2021-12-03
  • 录用日期:  2021-12-08
  • 网络出版日期:  2021-12-13
  • 刊出日期:  2022-03-19

目录

    /

    返回文章
    返回