Scalable all-metal reflective array beam scanning antenna
-
摘要: 提出了一种伸缩式全金属反射单元,在此基础上设计了一个可用于高功率微波领域的全金属反射阵列波束扫描天线。通过反射单元的上下独立滑动,阵列中每个阵元所接收电磁波的传输路径可改变,从而实现了相控波束扫描。由电磁仿真可知,设计的反射单元能够在10~13 GHz的频带范围内实现0~360°的线性相位调节,且可在15°~40°偏馈条件下相位调节时保持高功率容量。由该型单元组成的中心工作频率为10 GHz的伸缩式全金属反射阵列扫描天线具备90°锥角范围内的二维波束扫描能力,功率容量可达5 GW/m2。同时,在波束扫描过程中,天线增益变化小于3 dB,副瓣电平低于−13 dB,最大口径效率为54.59%。Abstract: A scalable all metal reflective element is proposed in this paper, and an all-metal reflective array antenna for high power microwave application is also designed. By sliding the connecting rod up and down, the transmission path of the incident wave to each element can be changed to achieve the corresponding phase modulation. Thus, the beam scanning can be achieved. Simulation result shows that the unit can realize linear phase adjustment of 360° within 10−13 GHz and has a power handling capacity of 3 MW, which means the array can achieve 5 GW/m2 power handling capacity level after the formation (under vacuum condition). Under the standard of 3 dB gain variation, the antenna can realize a two-dimensional spatial beam scanning within the range of 90° revolving cone angle.
-
Key words:
- beam scanning /
- array antenna /
- phase modulation /
- high-power microwave /
- power handing capacity
-
表 1 伸缩式全金属反射阵列扫描天线在不同波束指向时的辐射特性
Table 1. Radiation characteristics of the scalable reflective array antenna
status/(°) D/dBi FSLL/dB θHP/(°) εap/% (0,0) 32.8 −14.3 3.7 54.59 (15,0) 32.8 −14.1 3.4 54.59 (30,0) 32.4 −15.1 3.7 49.78 (45,0) 31.2 −14.7 4.5 37.77 (60,0) 29.4 −13.0 6.5 24.95 (45,90) 29.7 −13.3 4.9 26.74 (−60,180) 29.3 −13.0 6.5 24.38 -
[1] 赵柳, 张健穹, 吴晓降, 等. 4单元矩形径向线螺旋阵列天线的理论分析和数值模拟[J]. 强激光与粒子束, 2007, 19(11):1869-1872. (Zhao Liu, Zhang Jianqiong, Wu Xiaojiang, et al. Theoretical analysis and numerical simulation of 4-element rectangular helical array antenna fed from radial waveguide[J]. High Power Laser and Particle Beams, 2007, 19(11): 1869-1872 [2] 赵柳, 李相强, 刘庆想, 等. 16单元矩形径向线螺旋阵列天线的理论分析和数值模拟[J]. 强激光与粒子束, 2008, 20(3):431-434. (Zhao Liu, Li Xiangqiang, Liu Qingxiang, et al. Theoretical analysis and numerical simulation of 16-element radial line helical rectangular array antenna[J]. High Power Laser and Particle Beams, 2008, 20(3): 431-434 [3] Li Xiangqiang, Liu Qingxiang, Wu Xiaojiang, et al. A GW level high-power radial line helical array antenna[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(9): 2943-2948. doi: 10.1109/TAP.2008.928781 [4] 张健穹, 刘庆想, 李相强, 等. 三角形栅格矩形径向线螺旋阵列天线的设计与实验研究[J]. 强激光与粒子束, 2009, 21(4):550-554. (Zhang Jianqiong, Liu Qingxiang, Li Xiangqiang, et al. Design and experimental research on triangle-grid radial-line helical rectangular array antenna[J]. High Power Laser and Particle Beams, 2009, 21(4): 550-554 [5] Li Xiangqiang, Liu Qingxiang, Zhang Jianqiong, et al. 16-element single-layer rectangular radial line helical array antenna for high-power applications[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 708-711. doi: 10.1109/LAWP.2010.2059371 [6] Rahmati B, Hassani H R. Low-profile slot transmitarray antenna[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(1): 174-181. doi: 10.1109/TAP.2014.2368576 [7] Yu Longzhou, Yuan Chengwei, He Juntao, et al. Beam steerable array antenna based on rectangular waveguide for high-power microwave applications[J]. IEEE Transactions on Plasma science, 2019, 47(1): 535-541. doi: 10.1109/TPS.2018.2884290 [8] 马嘉雯, 孙云飞, 宛建峰, 等. 高功率谐振式波导缝隙阵宽角扫描技术[J]. 强激光与粒子束, 2021, 33:103002. (Ma Jiawen, Sun Yunfei, Wan Jianfeng, et al. Investigationon of wide-angle scanning technology for high power resonant waveguide slot array antenna[J]. High Power Laser and Particle Beams, 2021, 33: 103002 [9] Guo Letian, Huang Wenhua, Chang Chao, et al. Studies of a leaky-wave phased array antenna for high-power microwave applications[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 2366-2375. doi: 10.1109/TPS.2016.2601105 [10] 李佳伟, 黄文华, 梁铁柱, 等. 基于漏波波导的X波段高功率微波天线[J]. 强激光与粒子束, 2011, 23(8):2125-2129. (Li Jiawei, Huang Wenhua, Liang Tiezhu, et al. Design and simulation of X-band HPM antenna based on leaky waveguide[J]. High Power Laser and Particle Beams, 2011, 23(8): 2125-2129 doi: 10.3788/HPLPB20112308.2125 [11] 李佳伟, 黄文华, 张治强, 等. 基于漏波波导X波段高功率微波天线的实验[J]. 强激光与粒子束, 2011, 23(12):3363-3366. (Li Jiawei, Huang Wenhua, Zhang Zhiqiang, et al. Testing of an X-band HPM antenna based on leaky waveguide[J]. High Power Laser and Particle Beams, 2011, 23(12): 3363-3366 doi: 10.3788/HPLPB20112312.3363 [12] Barba M, Carrasco E, Page J E, et al. Electronic controllable reflectarray elements in X band[J]. Frequenz, 2007, 61(9/10): 203-206. [13] Riel M, Laurin J J. Design of an electronically beam scanning reflectarray using aperture-coupled elements[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(5): 1260-1266. doi: 10.1109/TAP.2007.895586 [14] Xu Wangren, Sonkusale S. Microwave diode switchable metamaterial reflector/absorber[J]. Applied Physics Letters, 2013, 103: 031902. doi: 10.1063/1.4813750 [15] Hum S V, Perruisseau-Carrier J. Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: a review[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(1): 183-198. doi: 10.1109/TAP.2013.2287296 [16] Dolgashev V, Tantawi S, Higashi Y, et al. Geometric dependence of radio-frequency breakdown in normal conducting accelerating structures[J]. Applied Physics Letters, 2010, 97: 171501. doi: 10.1063/1.3505339 [17] 张军, 张威, 巨金川, 等. X波段高功率相对论速调管放大器研究[J]. 强激光与粒子束, 2020, 32:103001. (Zhang Jun, Zhang Wei, Ju Jinchuan, et al. Research of X-band high power triaxial klystron amplifier[J]. High Power Laser and Particle Beams, 2020, 32: 103001