留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光驱动材料动态压缩技术

李牧 张红平 陈实 陶沛东 祝航 周沧涛 赵剑衡 孙承纬

李牧, 张红平, 陈实, 等. 激光驱动材料动态压缩技术[J]. 强激光与粒子束, 2022, 34: 011001. doi: 10.11884/HPLPB202234.210357
引用本文: 李牧, 张红平, 陈实, 等. 激光驱动材料动态压缩技术[J]. 强激光与粒子束, 2022, 34: 011001. doi: 10.11884/HPLPB202234.210357
Li Mu, Zhang Hongping, Chen Shi, et al. Laser driven dynamic compression of materials[J]. High Power Laser and Particle Beams, 2022, 34: 011001. doi: 10.11884/HPLPB202234.210357
Citation: Li Mu, Zhang Hongping, Chen Shi, et al. Laser driven dynamic compression of materials[J]. High Power Laser and Particle Beams, 2022, 34: 011001. doi: 10.11884/HPLPB202234.210357

激光驱动材料动态压缩技术

doi: 10.11884/HPLPB202234.210357
基金项目: 国家自然科学基金面上项目(11972330, 11974321, 11772310, 11472255) ;科学挑战专题(TZ2016001)
详细信息
    作者简介:

    李 牧,limu@sztu.edu.cn

  • 中图分类号: O521

Laser driven dynamic compression of materials

  • 摘要: 激光驱动动态压缩实验是极端高压高密度研究的主要途径,在多个学科领域具有重要意义,包括地球行星科学,材料科学以及惯性约束聚变,有助于认识极端条件下的材料特性并拓展其在各学科的应用。近年来激光驱动压缩技术在激光装置、激光等离子体、制靶和诊断技术的同步提升下取得了突破性的进展,与其他极端条件实验平台相比,其斜波压缩、复杂路径、衰减冲击等新型加载路径得到快速发展,微介观诊断技术和宏观诊断技术相结合,具有明确的超高压、高温、高应变率以及高同步精度等技术特色。从激光驱动材料压缩的热力学路径、激光驱动的机制与特色、激光驱动实验技术、材料极端压缩物理进展等方面介绍激光驱动实验和理论方面的进展。
  • 图  1  直接驱动低密度烧蚀等离子体中的激光等离子体过程,逆轫致吸收出现在临界密度之前[4]

    Figure  1.  Schematic of laser-plasma process in the underdense plasma corona, inverse bremsstrahlung absorption occurs up to critical density[4]

    图  2  激光直接驱动与间接驱动的示意图

    Figure  2.  Laser platforms for creating high-pressure experiments

    图  3  基于激光驱动的三种主要的热力学路径以及激光波形[14]

    Figure  3.  Thermodynamic compression paths within the sample for the case of laser-based compression[14]

    图  4  斜波准等熵压缩的运动学过程及测量和数据处理示意图[1]

    Figure  4.  Ramp quasi-isentropic compression: kinematics illustration, measurements, data analysis[1]

    图  5  动态压缩过程的温度随应变的变化曲线,包括理想等熵线、理想冲击绝热线以及斜波压缩线,斜波压缩偏应力大小[20]

    Figure  5.  Temperature evolution in dynamic compression, ideal isentrope, ideal Hugoniot curve and ramp compression[20]

    图  6  激光驱动材料压缩动力学实验的设计过程

    Figure  6.  Experimental design of material compression based on laser facilities

    图  7  速度干涉仪可以测量的移动反射面类型

    Figure  7.  Three types of moving reflecting surfaces in the interferometer velometer

    图  8  激光间接驱动冲击与斜波压缩实验研究示例[37-38]

    Figure  8.  Example of a laser indirect driven shock+ramp compression experiment[37-38]

    (a) ramped laser power vs time pulse shape that creats a ramped radiation temperature profile, thus providing a ramped pressure profile in the sample on the side of the hohlraum; (b) raw VISAR data of the stepped free surface velocity of sample; (c) analyzed free surface velocity for the different steps, and the Lagrangian sound speed vs free surface velocity; (d) ramp compression equation of state starting from first shocked state

    图  9  激光加载平台上与VISAR共用成像物镜的SOP测量系统示意图

    Figure  9.  Design of a streaked optical pyrometer system together with VISAR in the laser driven platform

    图  10  扫描光学高温计SOP信号强度与辐射亮温的关系曲线(左图),信号强度与冲击波速度的对应关系(右图)[55]

    Figure  10.  Designed intensity of streaked optical pyrometer (SOP) with brightness temperature (left) and SOP intensity vs shock velocity (right)[55]

    图  11  轻气炮实验中用(a) 16通道瞬态辐射高温计测量的铁/LiF界面谱亮度原始数据以及(b)处理后给出的拟合普朗克曲线及温度和发射率[59]

    Figure  11.  Spectral radiance measured at the interface of iron/LiF in gas gun platform. (a) raw data of a 16-channel time resolved optical pyrometer; (b) the fitted curve to determine the temperature and emissivity of iron[59]

    图  12  NIF上研发的高精度谱仪以及静态未压缩铜的EXAFS测量结果[63]

    Figure  12.  A high-resolution spectrometer in NIF and spectral data of an undriven Cu sample[63]

    图  13  基于激光加载平台的动态X射线衍射模式

    Figure  13.  Dynamic X-ray diffraction mode based on laser drive platform

    图  14  激光间接驱动金和铂等熵压缩的实验布局以及数据处理结果[1]

    Figure  14.  Experimental setup and date analysis of laser indirect drive shockless isentropic compression of Au and Pt[1]

    图  15  NIF开展的氘冷冻靶实验中VISAR原始数据以及不同方法测量的氘绝缘体金属化相变温压图

    Figure  15.  Raw VISAR data from the D2 cryogenic experiment in NIF and measured phase diagram for the D2 insulator to metal transition measured by different experiments

    图  16  基于静态预压缩的氢氦混合物激光冲击加载试验:靶结构,SOP和VISAR原始数据,氢氦温压相图[22]

    Figure  16.  Laser driven shock loading of static pre-compressed H-He mixture, the target structure, raw data of SOP and VISAR, phase diagram of H, He, and the mixture[22]

    图  17  (a)水静态预压缩至冰VII相再进行激光冲击压缩的电子电导率数据,气炮实验中单次冲击(黑色)与多次冲击(蓝色填充)的总电导率数据[23];(b)冰VII雨贡纽线(紫色,加粗段为超离子态)和多次冲击加载原位衍射实验发现的超离子态冰XVIII相(图中红色方块和红色圆圈为fcc结构)[69]

    Figure  17.  (a) Electrical conductivity of water from different experiment, electronic conductivity from laser shocked water ice with static pre-compression, shock reverberation (solid blue) and principal Hugoniot (black) of water[23]; (b) experimental data from Hugoniot of water ice VII and shock reverberation of liquid water, novel superionic water ice was found as fcc structure (red)[69]

    图  18  侧向稀疏法测量连续测量冲击雨贡纽声速的结构与原理示意图、原始数据以及石英单晶的声速处理结果

    Figure  18.  Continuous measurement of sound velocity along Hugoniot curve via lateral release method

  • [1] Fratanduono D E, Millot M, Braun D G, et al. Establishing gold and platinum standards to 1 terapascal using shockless compression[J]. Science, 2021, 372(6546): 1063-1068. doi: 10.1126/science.abh0364
    [2] Jeanloz R. Calibrating experiments at atom-crushing pressures[J]. Science, 2021, 372(6546): 1037-1038. doi: 10.1126/science.abi8015
    [3] Eliezer S. The interaction of high-power lasers with plasmas[J]. Plasma Physics and Controlled Fusion, 2003, 45(2): 181. doi: 10.1088/0741-3335/45/2/701
    [4] Campbell E M, Goncharov V N, Sangster T C, et al. Laser-direct-drive program: promise, challenge, and path forward[J]. Matter and Radiation at Extremes, 2017, 2(2): 37-54. doi: 10.1016/j.mre.2017.03.001
    [5] Duan Xiaoxi, Zhang Chen, Guan Zanyang, et al. Transparency measurement of lithium fluoride under laser-driven accelerating shock loading[J]. Journal of Applied Physics, 2020, 128: 015902. doi: 10.1063/5.0003869
    [6] 张红平, 张黎, 罗斌强, 等. 太帕压力下声速连续测量的高精度靶制备[J]. 高压物理学报, 2020, 34:033401. (Zhang Hongping, Zhang Li, Luo Binqiang, et al. High precision targets fabrication for sound velocity measurements in terapascal pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34: 033401
    [7] 王哲斌, 段晓溪, 张琛, 等. 万焦耳激光装置上多热力学路径高压加载技术实验研究[J]. 强激光与粒子束, 2020, 32:092008. (Wang Zhebin, Duan Xiaoxi, Zhang Chen, et al. Experimental research on high-pressure loading technology of multiple thermodynamic paths on 10 kJ-level laser facility[J]. High Power Laser and Particle Beams, 2020, 32: 092008
    [8] Ng A, Pasini D, Celliers P, et al. Ablation scaling in steady-state ablation dominated by inverse-bremsstrahlung absorption[J]. Applied Physics Letters, 1984, 45(10): 1046-1048. doi: 10.1063/1.95057
    [9] Dahmani F, Kerdja T. Laser-intensity and wavelength dependence of mass-ablation rate, ablation pressure, and heat-flux inhibition in laser-produced plasmas[J]. Physical Review A, 1991, 44(4): 2649-2655. doi: 10.1103/PhysRevA.44.2649
    [10] Fratanduono D E, Boehly T R, Celliers P M, et al. The direct measurement of ablation pressure driven by 351-nm laser radiation[J]. Journal of Applied Physics, 2011, 110: 073110. doi: 10.1063/1.3646554
    [11] Xue Quanxi, Wang Zhebin, Jiang Shaoen, et al. Laser-direct-driven quasi-isentropic experiments on aluminum[J]. Physics of Plasmas, 2014, 21: 072709. doi: 10.1063/1.4890851
    [12] Ferriter N, Maiden D E, Winslow A M, et al. Laser-beam optimization for momentum transfer by laser-supported detonation waves[J]. AIAA Journal, 1977, 15(11): 1597-1603. doi: 10.2514/3.7459
    [13] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. doi: 10.1063/1.871025
    [14] Duffy T S, Smith R F. Ultra-high pressure dynamic compression of geological materials[J]. Frontiers in Earth Science, 2019, 7: 23. doi: 10.3389/feart.2019.00023
    [15] Jeanloz R, Celliers P M, Collins G W, et al. Achieving high-density states through shock-wave loading of precompressed samples[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22): 9172-9177. doi: 10.1073/pnas.0608170104
    [16] Bradley D K, Eggert J H, Hicks D G, et al. Shock compressing diamond to a conducting fluid[J]. Physical Review Letters, 2004, 93: 195506. doi: 10.1103/PhysRevLett.93.195506
    [17] Eggert J H, Hicks D G, Celliers P M, et al. Melting temperature of diamond at ultrahigh pressure[J]. Nature Physics, 2010, 6(1): 40-43. doi: 10.1038/nphys1438
    [18] Edwards J, Lorenz K T, Remington B A, et al. Laser-driven plasma loader for shockless compression and acceleration of samples in the solid state[J]. Physical Review Letters, 2004, 92: 075002. doi: 10.1103/PhysRevLett.92.075002
    [19] 李牧, 孙承纬, 赵剑衡. 固体材料高功率激光斜波压缩研究进展[J]. 爆炸与冲击, 2015, 35(2):145-156. (Li Mu, Sun Chengwei, Zhao Jianheng. Progress in high-power laser ramp compression of solids[J]. Explosion and Shock Waves, 2015, 35(2): 145-156 doi: 10.11883/1001-1455(2015)02-0145-12
    [20] Smith R F, Eggert J H, Jankowski A, et al. Stiff response of aluminum under ultrafast shockless compression to 110 GPA[J]. Physical Review Letters, 2007, 98: 065701. doi: 10.1103/PhysRevLett.98.065701
    [21] Brygoo S, Millot M, Loubeyre P, et al. Analysis of laser shock experiments on precompressed samples using a quartz reference and application to warm dense hydrogen and helium[J]. Journal of Applied Physics, 2015, 118: 195901. doi: 10.1063/1.4935295
    [22] Brygoo S, Loubeyre P, Millot M, et al. Evidence of hydrogen−helium immiscibility at Jupiter-interior conditions[J]. Nature, 2021, 593(7860): 517-521. doi: 10.1038/s41586-021-03516-0
    [23] Millot M, Hamel S, Rygg J R, et al. Experimental evidence for superionic water ice using shock compression[J]. Nature Physics, 2018, 14(3): 297-302. doi: 10.1038/s41567-017-0017-4
    [24] Kimura T, Ozaki N, Okuchi T, et al. Significant static pressure increase in a precompression cell target for laser-driven advanced dynamic compression experiments[J]. Physics of Plasmas, 2010, 17: 054502. doi: 10.1063/1.3381039
    [25] Crandall L E, Rygg J R, Spaulding D K, et al. Equation of state of CO2 shock compressed to 1 TPa[J]. Physical Review Letters, 2020, 125: 165701. doi: 10.1103/PhysRevLett.125.165701
    [26] Shu Hua, Li Jiangtao, Tu Yucheng, et al. Measurement of the sound velocity of shock compressed water[J]. Scientific Reports, 2021, 11: 6116. doi: 10.1038/s41598-021-84978-0
    [27] Kraus D, Vorberger J, Pak A, et al. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions[J]. Nature Astronomy, 2017, 1(9): 606-611. doi: 10.1038/s41550-017-0219-9
    [28] Jeanloz R. Shock wave equation of state and finite strain theory[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B5): 5873-5886. doi: 10.1029/JB094iB05p05873
    [29] Jeanloz R. Universal equation of state[J]. Physical Review B, 1988, 38(1): 805-807. doi: 10.1103/PhysRevB.38.805
    [30] Jeanloz R. Finite-strain equation of state for high-pressure phases[J]. Geophysical Research Letters, 1981, 8(12): 1219-1222. doi: 10.1029/GL008i012p01219
    [31] Fu Sizu, Huang Xiuguang, Ma Minxun, et al. Analysis of measurement error in the experiment of laser equation of state with impedance-match way and the Hugoniot data of Cu up to ~ 2.24TPa with high precision[J]. Journal of Applied Physics, 2007, 101: 043517. doi: 10.1063/1.2538097
    [32] Manuel A M, Millot M, Seppala L G, et al. Upgrades to the VISAR-streaked optical pyrometer (SOP) system on NIF[C]//Proceedings of SPIE 9591, Target Diagnostics Physics and Engineering for Inertial Confinement Fusion IV. 2015: 959104.
    [33] Celliers P M, Bradley D K, Collins G W, et al. Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility[J]. Review of Scientific Instruments, 2004, 75(11): 4916-4929. doi: 10.1063/1.1807008
    [34] Weng Jidong, Wang Xiang, Ma Yun, et al. A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser[J]. Review of Scientific Instruments, 2008, 79: 113101. doi: 10.1063/1.3020700
    [35] Tao Tianjiong, Liu Shenggang, Ma Heli, et al. Twiddle factor neutralization method for heterodyne velocimetry[J]. Review of Scientific Instruments, 2014, 85: 013101. doi: 10.1063/1.4859598
    [36] Luo Binqiang, Li Mu, Wang Guiji, et al. Strain rate and hydrostatic pressure effects on strength of iron[J]. Mechanics of Materials, 2017, 114: 142-146. doi: 10.1016/j.mechmat.2017.08.001
    [37] Grant S C, Ao T, Seagle C T, et al. Equation of state measurements on iron near the melting curve at planetary core conditions by shock and ramp compressions[J]. Journal of Geophysical Research: Solid Earth, 2021, 126: e2020JB020008.
    [38] Park H S, Ali S J M, Celliers P M, et al. Techniques for studying materials under extreme states of high energy density compression[J]. Physics of Plasmas, 2021, 28: 060901. doi: 10.1063/5.0046199
    [39] Prisbrey S T, Park H S, Remington B A, et al. Tailored ramp-loading via shock release of stepped-density reservoirs[J]. Physics of Plasmas, 2012, 19: 056311. doi: 10.1063/1.3699361
    [40] Löwer T, Kondrashov V N, Basko M, et al. Reflectivity and optical brightness of laser-induced shocks in silicon[J]. Physical Review Letters, 1998, 80(18): 4000-4003. doi: 10.1103/PhysRevLett.80.4000
    [41] Ng A, Ao T. Nonequilibrium and non-steady-state evolution of a shock state[J]. Physical Review Letters, 2003, 91: 035002. doi: 10.1103/PhysRevLett.91.035002
    [42] Lee P A, Citrin P H, Eisenberger P, et al. Extended X-ray absorption fine structure—its strengths and limitations as a structural tool[J]. Reviews of Modern Physics, 1981, 53(4): 769-806. doi: 10.1103/RevModPhys.53.769
    [43] Yaakobi B, Boehly T R, Sangster T C, et al. Extended X-ray absorption fine structure measurements of quasi-isentropically compressed vanadium targets on the OMEGA laser[J]. Physics of Plasmas, 2008, 15: 062703. doi: 10.1063/1.2938749
    [44] Yaakobi B, Boehly T R, Meyerhofer D D, et al. Extended X-ray absorption fine structure measurement of phase transformation in iron shocked by nanosecond laser[J]. Physics of Plasmas, 2005, 12: 092703. doi: 10.1063/1.2036887
    [45] Yaakobi B, Meyerhofer D D, Boehly T R, et al. Extended X-ray absorption fine structure measurements of laser-shocked V and Ti and crystal phase transformation in Ti[J]. Physical Review Letters, 2004, 92: 095504. doi: 10.1103/PhysRevLett.92.095504
    [46] Brown F L H, Wilson K R, Cao Jianshu. Ultrafast extended X-ray absorption fine structure (EXAFS)--theoretical considerations[J]. The Journal of Chemical Physics, 1999, 111(14): 6238-6246. doi: 10.1063/1.479928
    [47] Ping Y, Coppari F, Hicks D G, et al. Solid iron compressed up to 560 GPa[J]. Physical Review Letters, 2013, 111: 065501. doi: 10.1103/PhysRevLett.111.065501
    [48] Voigt K, Zhang M, Ramakrishna K, et al. Demonstration of an X-ray Raman spectroscopy setup to study warm dense carbon at the high energy density instrument of European XFEL[J]. Physics of Plasmas, 2021, 28: 082701. doi: 10.1063/5.0048150
    [49] Millot M. Identifying and discriminating phase transitions along decaying shocks with line imaging Doppler interferometric velocimetry and streaked optical pyrometry[J]. Physics of Plasmas, 2016, 23: 014503. doi: 10.1063/1.4940942
    [50] Millot M, Dubrovinskaia N, Černok A, et al. Shock compression of stishovite and melting of silica at planetary interior conditions[J]. Science, 2015, 347(6220): 418-420. doi: 10.1126/science.1261507
    [51] Spaulding D K, Mcwilliams R S, Jeanloz R, et al. Evidence for a phase transition in silicate melt at extreme pressure and temperature conditions[J]. Physical Review Letters, 2012, 108: 065701. doi: 10.1103/PhysRevLett.108.065701
    [52] Hicks D G, Boehly T R, Eggert J H, et al. Dissociation of liquid silica at high pressures and temperatures[J]. Physical Review Letters, 2006, 97: 025502. doi: 10.1103/PhysRevLett.97.025502
    [53] McCoy C A, Marshall M C, Polsin D N, et al. Hugoniot, sound velocity, and shock temperature of MgO to 2300 GPa[J]. Physical Review B, 2019, 100: 014106. doi: 10.1103/PhysRevB.100.014106
    [54] Roycroft R, Bowers B, Smith H, et al. Streaked optical pyrometer for proton-driven isochoric heating experiments of solid and foam targets[J]. AIP Advances, 2020, 10: 045220. doi: 10.1063/1.5121538
    [55] Gregor M C, Boni R, Sorce A, et al. Absolute calibration of the OMEGA streaked optical pyrometer for temperature measurements of compressed materials[J]. Review of Scientific Instruments, 2016, 87: 114903. doi: 10.1063/1.4968023
    [56] Miller J E, Boehly T R, Melchior A, et al. Streaked optical pyrometer system for laser-driven shock-wave experiments on OMEGA[J]. Review of Scientific Instruments, 2007, 78: 034903. doi: 10.1063/1.2712189
    [57] Bradley D K, Eggert J H, Smith R F, et al. Diamond at 800 GPa[J]. Physical Review Letters, 2009, 102: 075503. doi: 10.1103/PhysRevLett.102.075503
    [58] Yoo C S, Holmes N C, Ross M, et al. Shock temperatures and melting of iron at Earth core conditions[J]. Physical Review Letters, 1993, 70(25): 3931-3934. doi: 10.1103/PhysRevLett.70.3931
    [59] Li Jun, Wu Qiang, Li Jiabo, et al. Shock melting curve of iron: a consensus on the temperature at the Earth's inner core boundary[J]. Geophysical Research Letters, 2020, 47: e2020GL087758.
    [60] Krygier A, Coppari F, Kemp G E, et al. Developing a high-flux, high-energy continuum backlighter for extended X-ray absorption fine structure measurements at the National Ignition Facility[J]. Review of Scientific Instruments, 2018, 89: 10F114. doi: 10.1063/1.5038669
    [61] Krygier A, Kemp G E, Coppari F, et al. Optimized continuum X-ray emission from laser-generated plasma[J]. Applied Physics Letters, 2020, 117: 251106. doi: 10.1063/5.0033629
    [62] Albert F, Lemos N, Shaw J L, et al. Betatron X-ray radiation in the self-modulated laser wakefield acceleration regime: prospects for a novel probe at large scale laser facilities[J]. Nuclear Fusion, 2019, 59: 032003. doi: 10.1088/1741-4326/aad058
    [63] Stoupin S, Thorn D B, Ose N, et al. The multi-optics high-resolution absorption X-ray spectrometer (HiRAXS) for studies of materials under extreme conditions[J]. Review of Scientific Instruments, 2021, 92: 053102. doi: 10.1063/5.0043685
    [64] Milathianaki D, Boutet S, Williams G J, et al. Femtosecond visualization of lattice dynamics in shock-compressed matter[J]. Science, 2013, 342(6155): 220-223. doi: 10.1126/science.1239566
    [65] Wehrenberg C E, Mcgonegle D, Bolme C, et al. In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics[J]. Nature, 2017, 550(7677): 496-499. doi: 10.1038/nature24061
    [66] Lazicki A, McGonegle D, Rygg J R, et al. Metastability of diamond ramp-compressed to 2 terapascals[J]. Nature, 2021, 589(7843): 532-535. doi: 10.1038/s41586-020-03140-4
    [67] Briggs R, Coppari F, Gorman M G, et al. Measurement of body-centered cubic gold and melting under shock compression[J]. Physical Review Letters, 2019, 123: 045701. doi: 10.1103/PhysRevLett.123.045701
    [68] Fratanduono D E, Smith R F, Ali S J, et al. Probing the solid phase of noble metal copper at terapascal conditions[J]. Physical Review Letters, 2020, 124: 015701. doi: 10.1103/PhysRevLett.124.015701
    [69] Millot M, Coppari F, Rygg J R, et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice[J]. Nature, 2019, 569(7755): 251-255. doi: 10.1038/s41586-019-1114-6
    [70] Wang Jue, Coppari F, Smith R F, et al. X-ray diffraction of molybdenum under ramp compression to 1 TPa[J]. Physical Review B, 2016, 94: 104102. doi: 10.1103/PhysRevB.94.104102
    [71] Kalantar D H, Belak J F, Collins G W, et al. Direct observation of the α-ε transition in shock-compressed iron via nanosecond X-ray diffraction[J]. Physical Review Letters, 2005, 95: 075502. doi: 10.1103/PhysRevLett.95.075502
    [72] 李俊, 陈小辉, 吴强, 等. 基于原位X射线衍射技术的动态晶格响应测量方法研究[J]. 物理学报, 2017, 66:136101. (Li Jun, Chen Xiaohui, Wu Qiang, et al. Experimental investigation on dynamic lattice response by in-situ Xray diffraction method[J]. Acta Physica Sinica, 2017, 66: 136101 doi: 10.7498/aps.66.136101
    [73] Suggit M, Kimminau G, Hawreliak J, et al. Nanosecond X-ray Laue diffraction apparatus suitable for laser shock compression experiments[J]. Review of Scientific Instruments, 2010, 81: 083902. doi: 10.1063/1.3455211
    [74] Comley A J, Maddox B R, Rudd R E, et al. Strength of shock-loaded single-crystal tantalum [100] determined using in situ broadband X-ray Laue diffraction[J]. Physical Review Letters, 2013, 110: 115501. doi: 10.1103/PhysRevLett.110.115501
    [75] Suggit M J, Higginbotham A, Hawreliak J A, et al. Nanosecond white-light Laue diffraction measurements of dislocation microstructure in shock-compressed single-crystal copper[J]. Nature Communications, 2012, 3: 1224. doi: 10.1038/ncomms2225
    [76] Cerantola V, Rosa A D, Konôpková Z, et al. New frontiers in extreme conditions science at synchrotrons and free electron lasers[J]. Journal of Physics:Condensed Matter, 2021, 33: 274003. doi: 10.1088/1361-648X/abfd50
    [77] Shen Guoyin, Wang Yanbin, Dewaele A, et al. Toward an international practical pressure scale: a proposal for an IPPS ruby gauge (IPPS-Ruby2020)[J]. High Pressure Research, 2020, 40(3): 299-314. doi: 10.1080/08957959.2020.1791107
    [78] Celliers P M, Millot M, Brygoo S, et al. Insulator-metal transition in dense fluid deuterium[J]. Science, 2018, 361(6403): 677-682. doi: 10.1126/science.aat0970
    [79] Desjarlais M P, Knudson M D, Redmer R. Comment on “Insulator-metal transition in dense fluid deuterium”[J]. Science, 2019, 363: eaaw0969. doi: 10.1126/science.aaw0969
    [80] Knudson M D, Desjarlais M P, Becker A, et al. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium[J]. Science, 2015, 348(6242): 1455-1460. doi: 10.1126/science.aaa7471
    [81] Stevenson D J. Thermodynamics and phase separation of dense fully ionized hydrogen-helium fluid mixtures[J]. Physical Review B, 1975, 12(10): 3999-4007. doi: 10.1103/PhysRevB.12.3999
    [82] Mankovich C R, Fortney J J. Evidence for a dichotomy in the interior structures of Jupiter and Saturn from helium phase separation[J]. The Astrophysical Journal, 2020, 889: 51. doi: 10.3847/1538-4357/ab6210
    [83] Schöttler M, Redmer R. Ab initio calculation of the miscibility diagram for hydrogen-helium mixtures[J]. Physical Review Letters, 2018, 120: 115703. doi: 10.1103/PhysRevLett.120.115703
    [84] Morales M A, Hamel S, Caspersen K, et al. Hydrogen-helium demixing from first principles: from diamond anvil cells to planetary interiors[J]. Physical Review B, 2013, 87: 174105. doi: 10.1103/PhysRevB.87.174105
    [85] Li Liming, Jiang Xun, West R A, et al. Less absorbed solar energy and more internal heat for Jupiter[J]. Nature Communications, 2018, 9: 3709. doi: 10.1038/s41467-018-06107-2
    [86] Liu Shangfei, Hori Y, Müller S, et al. The formation of Jupiter’s diluted core by a giant impact[J]. Nature, 2019, 572(7769): 355-357. doi: 10.1038/s41586-019-1470-2
    [87] Nettelmann N, Helled R, Fortney J J, et al. New indication for a dichotomy in the interior structure of Uranus and Neptune from the application of modified shape and rotation data[J]. Planetary and Space Science, 2013, 77: 143-151. doi: 10.1016/j.pss.2012.06.019
    [88] Stevenson D J. Formation of the giant planets[J]. Planetary and Space Science, 1982, 30(8): 755-764. doi: 10.1016/0032-0633(82)90108-8
    [89] Cavazzoni C, Chiarotti G L, Scandolo S, et al. Superionic and metallic states of water and ammonia at giant planet conditions[J]. Science, 1999, 283(5398): 44-46. doi: 10.1126/science.283.5398.44
    [90] Umemoto K, Wentzcovitch R M, Allen P B. Dissociation of MgSiO3 in the cores of gas giants and terrestrial exoplanets[J]. Science, 2006, 311(5763): 983-986. doi: 10.1126/science.1120865
    [91] Mazevet S, Tsuchiya T, Taniuchi T, et al. Melting and metallization of silica in the cores of gas giants, ice giants, and super Earths[J]. Physical Review B, 2015, 92: 014105. doi: 10.1103/PhysRevB.92.014105
    [92] Sugimura E, Komabayashi T, Ohta K, et al. Experimental evidence of superionic conduction in H2O ice[J]. The Journal of Chemical Physics, 2012, 137: 194505. doi: 10.1063/1.4766816
    [93] Demontis P, LeSar R, Klein M L. New high-pressure phases of ice[J]. Physical Review Letters, 1988, 60(22): 2284-2287. doi: 10.1103/PhysRevLett.60.2284
    [94] Knudson M D, Desjarlais M P, Lemke R W, et al. Probing the interiors of the ice giants: shock compression of water to 700 GPa and 3.8 g/cm3[J]. Physical Review Letters, 2012, 108: 091102. doi: 10.1103/PhysRevLett.108.091102
    [95] Celliers P M, Collins G W, Hicks D G, et al. Electronic conduction in shock-compressed water[J]. Physics of Plasmas, 2004, 11(8): L41-L44. doi: 10.1063/1.1758944
    [96] Smith R F, Eggert J H, Jeanloz R, et al. Ramp compression of diamond to five terapascals[J]. Nature, 2014, 511(7509): 330-333. doi: 10.1038/nature13526
    [97] Hicks D G, Boehly T R, Celliers P M, et al. High-precision measurements of the diamond Hugoniot in and above the melt region[J]. Physical Review B, 2008, 78: 174102. doi: 10.1103/PhysRevB.78.174102
    [98] Gregor M C, Fratanduono D E, McCoy C A, et al. Hugoniot and release measurements in diamond shocked up to 26 Mbar[J]. Physical Review B, 2017, 95: 144114. doi: 10.1103/PhysRevB.95.144114
    [99] Wang Peng, Zhang Chen, Jiang Shaoen, et al. Density-dependent shock Hugoniot of polycrystalline diamond at pressures relevant to ICF[J]. Matter and Radiation at Extremes, 2021, 6: 035902. doi: 10.1063/5.0039062
    [100] McWilliams R S, Spaulding D K, Eggert J H, et al. Phase transformations and metallization of magnesium oxide at high pressure and temperature[J]. Science, 2012, 338(6112): 1330-1333. doi: 10.1126/science.1229450
    [101] Coppari F, Smith R F, Eggert J H, et al. Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures[J]. Nature Geoscience, 2013, 6(11): 926-929. doi: 10.1038/ngeo1948
    [102] Root S, Townsend J P, Knudson M D. Shock compression of fused silica: an impedance matching standard[J]. Journal of Applied Physics, 2019, 126: 165901. doi: 10.1063/1.5126205
    [103] Hicks D G, Boehly T R, Celliers P M, et al. Shock compression of quartz in the high-pressure fluid regime[J]. Physics of Plasmas, 2005, 12: 082702. doi: 10.1063/1.2009528
    [104] Knudson M D, Desjarlais M P. Adiabatic release measurements in α-quartz between 300 and 1200 GPa: characterization of α-quartz as a shock standard in the multimegabar regime[J]. Physical Review B, 2013, 88: 184107. doi: 10.1103/PhysRevB.88.184107
    [105] Knudson M D, Desjarlais M P. Shock compression of quartz to 1.6 TPa: redefining a pressure standard[J]. Physical Review Letters, 2009, 103: 225501. doi: 10.1103/PhysRevLett.103.225501
    [106] Fratanduono D E, Millot M, Kraus R G, et al. Thermodynamic properties of MgSiO3 at super-Earth mantle conditions[J]. Physical Review B, 2018, 97: 214105. doi: 10.1103/PhysRevB.97.214105
    [107] Sekine T, Ozaki N, Miyanishi K, et al. Shock compression response of forsterite above 250 GPa[J]. Science Advances, 2016, 2: e1600157. doi: 10.1126/sciadv.1600157
    [108] Bolis R M, Morard G, Vinci T, et al. Decaying shock studies of phase transitions in MgO-SiO2 systems: implications for the super-Earths' interiors[J]. Geophysical Research Letters, 2016, 43(18): 9475-9483. doi: 10.1002/2016GL070466
    [109] Forbes J W. Shock wave compression of condensed matter: a primer[M]. Berlin, Heidelberg: Springer, 2012.
    [110] Duffy T, Madhusudhan N, Lee K K M. Mineralogy of super-earth planets[J]. Treatise on Geophysics, 2015, 2: 149-178.
    [111] Duffy T S, Ahrens T J. Sound velocities at high pressure and temperature and their geophysical implications[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B4): 4503-4520. doi: 10.1029/91JB02650
    [112] Duffy T S, Vos W L, Zha Changsheng, et al. Sound velocities in dense hydrogen and the interior of Jupiter[J]. Science, 1994, 263(5153): 1590-1593. doi: 10.1126/science.263.5153.1590
    [113] Hu Jianbo, Zhou Xianming, Dai Chengda, et al. Shock-induced bct-bcc transition and melting of tin identified by sound velocity measurements[J]. Journal of Applied Physics, 2008, 104: 083520. doi: 10.1063/1.3003325
    [114] Nissim N, Eliezer S, Werdiger M. The sound velocity throughout the P-ρ phase-space with application to laser induced shock wave in matter precompressed by a diamond anvil cell[J]. Journal of Applied Physics, 2014, 115: 213503. doi: 10.1063/1.4879855
    [115] Ohtani E, Mibe K, Sakamaki T, et al. Sound velocity measurement by inelastic X-ray scattering at high pressure and temperature by resistive heating diamond anvil cell[J]. Russian Geology and Geophysics, 2015, 56(1/2): 190-195.
    [116] McCoy C A, Knudson M D, Root S. Absolute measurement of the Hugoniot and sound velocity of liquid copper at multimegabar pressures[J]. Physical Review B, 2017, 96: 174109. doi: 10.1103/PhysRevB.96.174109
    [117] Li Mu, Zhang Shuai, Zhang Hongping, et al. Continuous sound velocity measurements along the shock hugoniot curve of quartz[J]. Physical Review Letters, 2018, 120: 215703. doi: 10.1103/PhysRevLett.120.215703
    [118] Fratanduono D E, Munro D H, Celliers P M, et al. Hugoniot experiments with unsteady waves[J]. Journal of Applied Physics, 2014, 116: 033517. doi: 10.1063/1.4890014
    [119] McCoy C A, Gregor M C, Polsin D N, et al. Measurements of the sound velocity of shock-compressed liquid silica to 1100 GPa[J]. Journal of Applied Physics, 2016, 120: 235901. doi: 10.1063/1.4972338
    [120] Fratanduono D E, Celliers P M, Braun D G, et al. Equation of state, adiabatic sound speed, and Gruneisen coefficient of boron carbide along the principal Hugoniot to 700 GPa[J]. Physical Review B, 2016, 94: 184107. doi: 10.1103/PhysRevB.94.184107
    [121] Henderson B J, Marshall M C, Boehly T R, et al. Shock-compressed silicon: hugoniot and sound speed up to 2100 GPa[J]. Physical Review B, 2021, 103: 094115. doi: 10.1103/PhysRevB.103.094115
  • 加载中
图(18)
计量
  • 文章访问数:  1159
  • HTML全文浏览量:  355
  • PDF下载量:  226
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-18
  • 修回日期:  2021-12-19
  • 网络出版日期:  2021-12-28
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回