留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于谐振电路的固态Marx发生器的顶降补偿

饶俊峰 王秀智 王永刚 李孜 姜松

饶俊峰, 王秀智, 王永刚, 等. 基于谐振电路的固态Marx发生器的顶降补偿[J]. 强激光与粒子束, 2022, 34: 075005. doi: 10.11884/HPLPB202234.210435
引用本文: 饶俊峰, 王秀智, 王永刚, 等. 基于谐振电路的固态Marx发生器的顶降补偿[J]. 强激光与粒子束, 2022, 34: 075005. doi: 10.11884/HPLPB202234.210435
Rao Junfeng, Wang Xiuzhi, Wang Yonggang, et al. Voltage droop compensation based on resonant circuit for solid-state Marx generators[J]. High Power Laser and Particle Beams, 2022, 34: 075005. doi: 10.11884/HPLPB202234.210435
Citation: Rao Junfeng, Wang Xiuzhi, Wang Yonggang, et al. Voltage droop compensation based on resonant circuit for solid-state Marx generators[J]. High Power Laser and Particle Beams, 2022, 34: 075005. doi: 10.11884/HPLPB202234.210435

基于谐振电路的固态Marx发生器的顶降补偿

doi: 10.11884/HPLPB202234.210435
基金项目: 国家重点研发计划数字诊疗专项(2019YFC0119100);上海市青年科技英才扬帆计划项目(19YF1435000) ;上海理工大学-上海交通大学医学院医工交叉重点支持项目(2021005)
详细信息
    作者简介:

    饶俊峰,raojunfeng1985@163.com

  • 中图分类号: TM832

Voltage droop compensation based on resonant circuit for solid-state Marx generators

  • 摘要: 在诸如粒子加速器等应用中,要求高压脉冲的电压、电流顶降尽可能低。减小顶降的常用方法是增加储能电容器的容量,但代价是系统的能效较低、体积较大、功率较高。另一种方法是插入一些特殊级来补偿电压顶降。在固态Marx发生器中,当谐振电感和补偿开关串联起来与普通级中的主电容并联时,就得到了补偿级。本文在16级单极性固态Marx发生器中加入了四个基于谐振电路的补偿级,以补偿不同负载、不同脉宽下的电压顶降。在放电过程中,将正弦电压的近线性部分加到负载上作为补偿,实现了几乎无电压顶降的矩形脉冲。不同的补偿级数可以对电压顶降进行不同程度的补偿,补偿效果也是可调的。此外,只要关断谐振管,这些补偿级也可以作为固态Marx发生器中的普通级工作,从而加以利用。由于谐振补偿级中的电容也与Marx电路中的电容并联充电,因此不需要辅助电源充电。实验结果表明,在400 Ω和5 kΩ阻性负载上,2.5 kV和10.5 kV脉冲的电压顶降分别都能得到理想的补偿。为了获得更好的补偿效果,脉冲宽度应小于正弦电压的近线性部分的长度。
  • 图  1  带谐振补偿级的正极性Marx拓扑

    Figure  1.  Unipolar SSMG with multi-stage voltage droop compensation

    图  2  谐振补偿方法的原理

    Figure  2.  Principle of resonant compensation

    图  3  充电工作模式

    Figure  3.  Charging operating mode of the circuit

    图  4  谐振工作模式

    Figure  4.  Resonance process of the circuit

    图  5  放电工作模式

    Figure  5.  Discharge operating mode of the circuit

    图  6  补偿级作为Marx普通级的放电工作模式

    Figure  6.  Discharge operating mode without compensation

    图  7  再充电过程和截尾示意图

    Figure  7.  Recharging operating mode and progress of truncating the wave tail

    图  8  开关管信号时序图

    Figure  8.  Drive signals of switches of the circuit

    图  9  带四级谐振补偿的16级Marx发生器实物图

    Figure  9.  A 16-stage Marx generator with 4 resonant voltage droop compensation stages

    图  10  不同负载下的输出电压波形

    Figure  10.  Voltage waveforms with different voltage droop over (a) 400-Ω and (b) 5-kΩ resistive loads

    图  11  补偿后不同负载下的输出电压波形

    Figure  11.  Voltage waveforms with voltage droop compensation over (a) 400-Ω and (b) 5-kΩ resistive loads

    图  12  1至4级补偿的电压波形

    Figure  12.  Waveforms with different number of stages of resonant voltage droop compensation

    图  13  补偿后的2.5 kV电压波形及其第一级谐振电容电压波形

    Figure  13.  Waveform of the 2.5-kV output voltage after compensation and voltage of its capacitor Cres1

    图  14  不同脉宽补偿后的2.5 kV输出电压波形

    Figure  14.  Waveform of the 2.5-kV output voltage after compensation with different pulse widths

    图  15  四级补偿级增加的13.3 kV输出电压波形

    Figure  15.  Waveform of the 13.3-kV output voltage increased by 4 compensation stages

  • [1] Canacsinh H, Redondo L M, Silva J F, et al. Voltage droop compensation based on resonant circuit for generalized high voltage solid-state Marx modulator[C]//2016 IEEE Applied Power Electronics Conference and Exposition (APEC). 2016: 3637-3640.
    [2] 刘克富. 固态Marx发生器研究进展[J]. 高电压技术, 2015, 41(6):1781-1787. (Liu Kefu. Research progress in solid-state Marx generators[J]. High Voltage Engineering, 2015, 41(6): 1781-1787

    Liu Kefu. Research progress in solid-state Marx generators[J]. High Voltage Engineering, 2015, 41(6): 1781-1787
    [3] 饶俊峰, 邱剑, 刘克富. 脉冲压缩电路磁开关动态特性[J]. 强激光与粒子束, 2012, 24(4):859-862. (Rao Junfeng, Qiu Jian, Liu Kefu. Dynamic characteristics of magnetic switch with pulse compression circuit[J]. High Power Laser and Particle Beams, 2012, 24(4): 859-862 doi: 10.3788/HPLPB20122404.0859

    Rao Junfeng, Qiu Jian, Liu Kefu. Dynamic characteristics of magnetic switch with pulse compression circuit[J]. High Power Laser and Particle Beams, 2012, 24(4): 859-862 doi: 10.3788/HPLPB20122404.0859
    [4] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20):1-9. (Dai Dong, Ning Wenjun, Shao Tao. A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9

    Dai Dong, Ning Wenjun, Shao Tao. A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9
    [5] 郑超. 低温等离子体和脉冲电场灭菌技术[D]. 杭州: 浙江大学, 2013

    Zheng Chao. Non-thermal plasma and pulsed electric field induced disinfection[D]. Hangzhou: Zhejiang University, 2013
    [6] Elserougi A A, Faiter M, Massoud A M, et al. A transformerless bipolar/unipolar high-voltage pulse generator with low-voltage components for water treatment applications[J]. IEEE Transactions on Industry Applications, 2017, 53(3): 2307-2319. doi: 10.1109/TIA.2017.2666080
    [7] 江伟华. 高重复频率脉冲功率技术及其应用: (6)代表性的应用[J]. 强激光与粒子束, 2014, 26:030201. (Jiang Weihua. Repetition rate pulsed power technology and its applications: (vi) typical applications[J]. High Power Laser and Particle Beams, 2014, 26: 030201 doi: 10.3788/HPLPB20142603.30201

    Jiang Weihua. Repetition rate pulsed power technology and its applications: (vi) typical applications[J]. High Power Laser and Particle Beams, 2014, 26: 030201 doi: 10.3788/HPLPB20142603.30201
    [8] 李军, 严萍, 袁伟群. 电磁轨道炮发射技术的发展与现状[J]. 高电压技术, 2014, 40(4):1052-1064. (Li Jun, Yan Ping, Yuan Weiqun. Electromagnetic gun technology and its development[J]. High Voltage Engineering, 2014, 40(4): 1052-1064

    Li Jun, Yan Ping, Yuan Weiqun. Electromagnetic gun technology and its development[J]. High Voltage Engineering, 2014, 40(4): 1052-1064
    [9] Canacsinh H, Silva F A, Redondo L M, et al. Increasing the voltage droop compensation range in generalized bipolar solid-state Marx modulador[C]//2017 IEEE 21st International Conference on Pulsed Power (PPC). 2017: 1-4.
    [10] Tang T, Burkhart C, Nguyen M. A vernier regulator for ILC Marx droop compensation[C]//2009 IEEE Pulsed Power Conference. 2009: 1402-1405.
    [11] Pfeffer H, Bartelson L, Bourkland K, et al. A long pulse modulator for reduced size and cost[C]//Twenty-First International Power Modulator Symposium, Conference. 1994: 48-51.
    [12] Cassel R L. Pulsed voltage droop compensation for solid state Marx modulator[C]//2008 IEEE International Power Modulators and High-Voltage Conference. 2008: 117-119.
    [13] Canacsinh H, Silva J F, Redondo L M. Dual resonant voltage droop compensation for bipolar solid-state Marx generator topologies[J]. IEEE Transactions on Plasma Science, 2019, 47(1): 1017-1023. doi: 10.1109/TPS.2018.2868495
    [14] Canacsinh H, Silva J F, Redondo L M. PWM voltage droop compensation for bipolar solid-state Marx generator topologies[J]. IEEE Transactions on Plasma Science, 2017, 45(6): 975-980. doi: 10.1109/TPS.2017.2692392
    [15] Canacsinh H, Silva F A, Redondo L M, et al. Optimized solid-state bipolar Marx modulador with resonant type droop compensation[C]//2017 IEEE 21st International Conference on Pulsed Power (PPC). 2017: 1-4.
    [16] Redondo L M, Canacsinh H, Silva J F. Generalized solid-state Marx modulator topology[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(4): 1037-1042. doi: 10.1109/TDEI.2009.5211851
  • 加载中
图(15)
计量
  • 文章访问数:  938
  • HTML全文浏览量:  435
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-14
  • 修回日期:  2022-01-05
  • 录用日期:  2022-01-05
  • 网络出版日期:  2022-06-15
  • 刊出日期:  2022-05-12

目录

    /

    返回文章
    返回