留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强流二极管阳极靶温度和热形变模拟

胡杨 蔡丹 孙江 张金海 杨海亮 孙剑锋 尹佳辉 呼义翔

胡杨, 蔡丹, 孙江, 等. 强流二极管阳极靶温度和热形变模拟[J]. 强激光与粒子束, 2022, 34: 075012. doi: 10.11884/HPLPB202234.210442
引用本文: 胡杨, 蔡丹, 孙江, 等. 强流二极管阳极靶温度和热形变模拟[J]. 强激光与粒子束, 2022, 34: 075012. doi: 10.11884/HPLPB202234.210442
Hu Yang, Cai Dan, Sun Jiang, et al. Simulation of the temperature and thermal deformation of anode targets in high-current diodes[J]. High Power Laser and Particle Beams, 2022, 34: 075012. doi: 10.11884/HPLPB202234.210442
Citation: Hu Yang, Cai Dan, Sun Jiang, et al. Simulation of the temperature and thermal deformation of anode targets in high-current diodes[J]. High Power Laser and Particle Beams, 2022, 34: 075012. doi: 10.11884/HPLPB202234.210442

强流二极管阳极靶温度和热形变模拟

doi: 10.11884/HPLPB202234.210442
基金项目: 国家自然科学基金项目(11705150)
详细信息
    作者简介:

    胡 杨,huyang@nint.ac.cn

  • 中图分类号: TL506;O462

Simulation of the temperature and thermal deformation of anode targets in high-current diodes

  • 摘要: 以电子束在靶中的能量沉积剖面为桥梁,建立了二极管阳极靶温度和热形变模拟方法。该方法可获知二极管不同工作状态下靶的温度分布和热形变情况,为靶热-力学损伤研究提供基础数据,为二极管构型设计和寿命提升提供技术支撑。将该方法应用于“强光一号”短γ二极管,计算结果显示:当阳极离子密度大于1014 cm−3时(强箍缩),靶表面温度最高可达5500~6000 ℃,热形变量达约4.5 mm;无离子流时(弱箍缩),温度处在4500 ℃左右,形变为2.8~3.5 mm。
  • 图  1  阳极靶温度和热应力模拟方法示意图

    Figure  1.  Schematic of the method of anodes temperature and thermal deformation simulation

    图  2  “强光一号”短γ状态负载区域示意图

    Figure  2.  Diagram of the load area of the“Qiangguang-I”accelerator

    图  3  无阳极离子流时不同时刻下电子空间分布图像

    Figure  3.  Particle images at 10 ns, 15 ns and 30 ns without ions

    图  4  存在阳极离子流(H+, 1014 cm−3)时的电子分布图像

    Figure  4.  Particle images at 10 ns, 15 ns and 30 ns with H+ ions (1014 cm−3)

    图  5  不同阳极离子密度电子束靶面落点分布

    Figure  5.  Position distributions in r direction of the target with different ions densities

    图  6  不同阳极离子密度下电子束入射角分布

    Figure  6.  Incident angle distributions with different ions densities

    图  7  不同离子流情况下阳极靶能量沉积剖面

    Figure  7.  Energy deposition profile on the anode target of electrons with different ions densities

    图  8  阳极靶有限元模型

    Figure  8.  FEM model of the Ta target

    图  9  靶心表面温度变化图(0.1 ns~20 s)

    Figure  9.  Max tempreture as functions of time of the target surface with r ≤20 mm (0.1 ns~20 s,logarithmic)

    图  10  靶心表面温度变化图(0~6 μs)

    Figure  10.  Max tempreture as functions of time of the target surface with r ≤20 mm (0~6 μs)

    图  11  不同阳极离子密度影响下阳极靶靶心(r≤20 mm)热形变模拟结果

    Figure  11.  Simulation results of the thermal deformation of the target (r≤20 mm) with different ions densities

    表  1  靶心区域(r≤20 mm)各层热功率密度

    Table  1.   Power density of every 0.06 mm depth in the r≤20 mm region

    depth/mmthermal power density/(TW/m2)
    no ions1012 ion/cm31014 ion/cm31015 ion/cm3
    0.061.322.228.679.71
    0.121.292.036.707.34
    0.180.951.514.474.93
    0.240.631.072.783.04
    0.300.380.741.621.74
    0.360.220.480.870.93
    0.420.120.290.440.46
    0.480.060.160.200.22
    0.540.030.080.080.09
    0.600.010.030.030.03
    下载: 导出CSV

    表  2  钽材料参数

    Table  2.   Properties of Ta

    density/
    (kg/m3)
    coefficient of
    thermal expansion/C−1
    Young’s modulus/
    Pa
    Poisson’s
    ratio
    bulk
    modulus/Pa
    shear
    modulus/Pa
    thermal conductivity
    (25 ℃)/(W·m−1·C−1)
    specific heat
    (26 ℃)/(J·g−1·K−1)
    166906.5×10−61.86×10110.352.0667×10116.8889×1010540.135
    下载: 导出CSV
  • [1] 牛锦超. 材料在脉冲X射线辐照下热-力学效应的SPH数值模拟研究[D]. 长沙: 国防科学技术大学, 2006: 8-9

    Niu Jinchao. SPH simulation of thermo-mechanical effects in materials under pulse X-rays radiation[D]. Changsha: National University of Defense Technology, 2006: 8-9
    [2] 刘学. 脉冲电子束模拟X射线热—力学效应的优化研究[D]. 长沙: 国防科学技术大学, 2016: 2-3

    Liu Xue. Optimization study on pulsed electron beam in simulating thermo-mechanical effects of X-ray[D]. Changsha: National University of Defense Technology, 2016: 2-3
    [3] 任书庆, 黄建军, 张永民, 等. “闪光二号”加速器运行状态分析及维护[J]. 强激光与粒子束, 2012, 24(3):703-705. (Ren Shuqing, Huang Jianjun, Zhang Yongmin, et al. Operation analysis and maintenance of Flash-II accelerator[J]. High Power Laser and Particle Beams, 2012, 24(3): 703-705 doi: 10.3788/HPLPB20122403.0703

    Ren Shuqing, Huang Jianjun, Zhang Yongmin, et al. Operation analysis and maintenance of Flash-II accelerator[J]. High Power Laser and Particle Beams, 2012, 24(3): 703-705 doi: 10.3788/HPLPB20122403.0703
    [4] 朱隽, 章林文, 龙继东, 等. 高能通量脉冲电子束作用下钽靶破坏初步研究[J]. 强激光与粒子束, 2005, 17(10):1581-1584. (Zhu Jun, Zhang Linwen, Long Jidong, et al. Basic study on destruction of tantalum target bombarded by high energy flux pulse electron beam[J]. High Power Laser and Particle Beams, 2005, 17(10): 1581-1584

    Zhu Jun, Zhang Linwen, Long Jidong, et al. Basic study on destruction of tantalum target bombarded by high energy flux pulse electron beam[J]. High Power Laser and Particle Beams, 2015, 17(10): 1581-1584
    [5] Qin Ying, Zou Jianxin, Dong Chuang, et al. Temperature–stress fields and related phenomena induced by a high current pulsed electron beam[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 225(4): 544-554.
    [6] 王刚, 徐强, 刘洋, 等. 激光辐照引起的材料温度场和热应力场的瞬态分布[J]. 应用光学, 2011, 32(4):801-805. (Wang Gang, Xu Qiang, Liu Yang, et al. Transient distributions of temperature field and thermal stress field induced by laser irradiation[J]. Journal of Applied Optics, 2011, 32(4): 801-805 doi: 10.3969/j.issn.1002-2082.2011.04.040

    Wang Gang, Xu Qiang, Liu Yang, et al. Transient distributions of temperature field and thermal stress field induced by laser irradiation[J]. Journal of Applied Optics, 2011, 32(4): 801-805 doi: 10.3969/j.issn.1002-2082.2011.04.040
    [7] 石磊. 脉冲离子束轰击靶的热效应数值模拟[J]. 原子能科学技术, 2010, 44(s1):572-575. (Shi Lei. Simulation on thermal effect of target irradiated by pulsed ion beam[J]. Atomic Energy Science and Technology, 2010, 44(s1): 572-575

    Shi Lei. Simulation on thermal effect of target irradiated by pulsed ion beam[J]. Atomic Energy Science and Technology, 2010, 44(s1): 572-575
    [8] Dennett C A, Buller D L, Hattar K, et al. Real-time thermomechanical property monitoring during ion beam irradiation using in situ transient grating spectroscopy[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, 440: 126-138.
    [9] 言杰, 刘猛, 林菊芳, 等. 脉冲离子束作用下的靶温度场-应力场耦合分析[J]. 核技术, 2013, 36:050203. (Yan Jie, Liu Meng, Lin Jufang, et al. Coupling analysis of the target temperature and thermal stress due to pulsed ion beam[J]. Nuclear Techniques, 2013, 36: 050203 doi: 10.11889/j.0253-3219.2013.hjs.36.050203

    Yan Jie, Liu Meng, Lin Jufang, et al. Coupling analysis of the target temperature and thermal stress due to pulsed ion beam[J]. Nuclear Techniques, 2013, 36: 050203 doi: 10.11889/j.0253-3219.2013.hjs.36.050203
    [10] 乔登江. 脉冲X射线热-力学效应及加固技术基础[M]. 北京: 国防工业出版社, 2012: 99

    Qiao Dengjiang. Pulsed X-ray thermal-mechanical effects and fundament of nuclear hardening techniques[M]. Beijing: National Defense Industry Press, 2012: 99
    [11] Kelly J G, Goldstein S A, Swain D W. Influence of anode composition on the electrical properties of relativistic electron-beam diodes[J]. Journal of Applied Physics, 1975, 46(11): 4726-4729. doi: 10.1063/1.321547
    [12] Cai Dan, Liu Lie, Ju Jinchuan, et al. Simulative research on the anode plasma dynamics in the high-power electron beam diode[J]. Physics of Plasmas, 2015, 22: 073108. doi: 10.1063/1.4926580
    [13] 胡杨. 伽马辐照二极管复合阳极等离子体物理特性研究[R]. 西安: 西北核技术研究所, 2021

    Hu Yang. Physical characteristics of composite anode plasma in gamma-irradiation diode[R]. Xi’an: Northwest Institute of Nuclear Technology, 2021
    [14] 蒯斌, 邱爱慈, 曾正中, 等. 短脉冲高剂量率γ射线源技术研究[J]. 强激光与粒子束, 2005, 17(4):595-598. (Kuai Bin, Qiu Aici, Zeng Zhengzhong, et al. Research on source of high dose rate gamma-ray with short pulse duration[J]. High Power Laser and Particle Beams, 2005, 17(4): 595-598

    Kuai Bin, Qiu Aici, Zeng Zhengzhong, et al. Research on source of high dose rate gamma-ray with short pulse duration[J]. High Power Laser and Particle Beams, 2005, 17(4): 595-598
    [15] 陈伟, 杨海亮, 邱爱慈, 等. 辐射物理研究中的基础科学问题[M]. 北京: 科学出版社, 2018: 10-11

    Chen Wei, Yang Hailiang, Qiu Aici, et al. Basic science issues in radiation physics research[M]. Beijing: Science Press, 2018: 10-11
    [16] Sanford T W L, Halbleib J A, Poukey J W, et al. Measurement of electron energy deposition necessary to form an anode plasma in Ta, Ti, and C for coaxial bremsstrahlung diodes[J]. Journal of Applied Physics, 1989, 66(1): 10-22. doi: 10.1063/1.343913
    [17] 吴迪. 强流脉冲离子束与靶材相互作用的数值研究[D]. 大连: 大连理工大学, 2006: 38-39

    Wu Di. Numerical study on interaction of intense pulsed ion beam and target[D]. Dalian: Dalian University of Technology, 2006: 38-39
    [18] 元计算. FELAC. MECH结构仿真分析软件[EB/OL]. [2022-01-10]. http://www.yuanjisuan.cn/mech/#.

    Element Calculating Technology Co., Ltd. Structure simulation analysis software FELAC. MECH. http://www.yuanjisuan.cn/mech/#.
    [19] 胡杨,杨海亮,张鹏飞,等. 强流二极管阳极电子束时域能量沉积特性模拟[J]. 强激光与粒子束, 2018, 30:026001. (Hu Yang, Yang Hailiang, Zhang Pengfei, et al. Simulation of intense electron beam time-dependent energy deposition on anode target of high-current diode[J]. High Power Laser and Particle Beams, 2018, 30: 026001

    Hu Yang, Yang Hailiang, Zhang Pengfei, et al. Simulation of intense electron beam time-dependent energy deposition on anode target of high-current diode[J]. High Power Laser and Particle Beams, 2018, 30: 026001.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  504
  • HTML全文浏览量:  185
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-19
  • 修回日期:  2022-04-18
  • 录用日期:  2022-04-22
  • 网络出版日期:  2022-07-04
  • 刊出日期:  2022-05-12

目录

    /

    返回文章
    返回