留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

能散对直线感应加速器焦斑分布的影响

王科 代志勇 夏连胜 张篁 李劲 范培亮 杨治勇

王科, 代志勇, 夏连胜, 等. 能散对直线感应加速器焦斑分布的影响[J]. 强激光与粒子束, 2022, 34: 094002. doi: 10.11884/HPLPB202234.210450
引用本文: 王科, 代志勇, 夏连胜, 等. 能散对直线感应加速器焦斑分布的影响[J]. 强激光与粒子束, 2022, 34: 094002. doi: 10.11884/HPLPB202234.210450
Wang Ke, Dai Zhiyong, Xia Liansheng, et al. Influence of energy spread on the transverse profile of the focused electron beam[J]. High Power Laser and Particle Beams, 2022, 34: 094002. doi: 10.11884/HPLPB202234.210450
Citation: Wang Ke, Dai Zhiyong, Xia Liansheng, et al. Influence of energy spread on the transverse profile of the focused electron beam[J]. High Power Laser and Particle Beams, 2022, 34: 094002. doi: 10.11884/HPLPB202234.210450

能散对直线感应加速器焦斑分布的影响

doi: 10.11884/HPLPB202234.210450
基金项目: 国家自然科学基金项目(11875242, 11805191)
详细信息
    作者简介:

    王 科,caepacc@sina.com

    通讯作者:

    杨治勇,fantasy13089@163.com

  • 中图分类号: TL501

Influence of energy spread on the transverse profile of the focused electron beam

  • 摘要: 介绍了均方根(RMS)、半高全宽(FWHM)和50%调制传递函数(MTF)等效均匀分布等焦斑尺寸评价方法。针对一台直线感应加速器,通过建立理论模型和开展逐束片PIC模拟研究了长脉冲(约100 ns)电子束的聚焦过程,分析了能量、流强与平顶区差异较大的脉冲上升/下降沿对FWHM和MTF焦斑尺寸的影响。研究结果表明:能散度较大的束流上升/下降沿会导致束流焦斑,尤其是MTF焦斑显著增长,在模拟结果中FWHM尺寸增长约9%,而MTF尺寸增长达到约24%,是目前导致束流底宽偏大的主要因素之一。
  • 图  1  均匀分布、高斯分布、本涅特分布曲线(a),及对应的空间频域曲线F(k)(b)

    Figure  1.  The curvatures of Kapchiskij-Vladimirskij (KV) distribution, Gaussian distribution, Bennett distribution (a), and their spatial Fourier expansion (b)

    图  2  焦距差异导致的束流横向位置差异示意图

    Figure  2.  The position deviation of electrons induced by focusing length difference

    图  3  根据实验数据获得的束流的能量和流强分布

    Figure  3.  Current and energy distribution of the electron beam measured in experiment

    图  4  根据公式(1)计算得到的中心束片和整个束流聚焦后的横向分布

    Figure  4.  Transverse profiles of the center slice and of the whole beam calculated with formula (1)

    图  5  根据公式(1)计算得到第#(46−n) 至 #(46+n)号束片叠加后的MTF尺寸(右),其中#46为中心束片

    Figure  5.  MTF size of the electron bunch composed with slice #(46−n) to #(46+n) (right), the results are calculated with formula (1)

    图  6  PIC模拟得到的中心束片和整个束流聚焦后的横向分布

    Figure  6.  Transverse profiles of the center slice and of the whole beam simulated with ASTRA

    图  7  PIC模拟得到的第#(46−n) 至 #(46+n)号束片叠加后的MTF尺寸,其中#46为中心束片

    Figure  7.  MTF size of the electron bunch composed with slice #(46−n) to #(46+n) , the results are calculated with the PIC code ASTRA

    表  1  不同分布函数下,FWHM尺寸与MTF尺寸的对应关系

    Table  1.   Relationship between the FWHM beam size and the MTF beam size in various distributions

    $\;\mathit{f}\left(\mathit{x}\right)$$ {\rm{\sigma }}_{\rm{F}\rm{W}\rm{H}\rm{M}} $/mm$ {\mathit{k}}_{0} $/mm−1$ {\rm{\sigma }}_{\rm{M}\rm{T}\rm{F}} $/mm
    KV1.000.7051.00
    Gaussian1.000.4411.60
    Bennett1.000.2582.70
    下载: 导出CSV
  • [1] 邓建军, 丁伯南, 王华岑, 等. “神龙一号”直线感应加速器物理设计[J]. 强激光与粒子束, 2003, 15(5):502-504. (Deng Jianjun, Ding Bo’nan, Wang Huacen, et al. Physical design of the Dragon-I linear induction accelerator[J]. High Power Laser and Particle Beams, 2003, 15(5): 502-504

    Deng Jianjun, Ding Bonan, Wang Huacen, et al. Physical design of the Dragon-I Linear induction accelerator[J]. High Power Laser and Particle Beams, 2003, 15(5): 502-504
    [2] Klasky M L. Physics based radiography[R]. LA-CP-18-00890, 2018.
    [3] 石金水, 邓建军, 章林文, 等. 神龙二号加速器及其关键技术[J]. 强激光与粒子束, 2016, 28:010201. (Shi Jinshui, Deng Jianjun, Zhang Linwen, et al. Dragon-II accelerator and its key technology[J]. High Power Laser and Particle Beams, 2016, 28: 010201 doi: 10.11884/HPLPB201628.010201

    Shi Jinshui, Deng Jianjun, Zhang Linwen, et al. Dragon-II accelerator and its key technology[J]. High Power Laser and Particle Beams, 2016, 28: 010201 doi: 10.11884/HPLPB201628.010201
    [4] Ekdahl C. Electron-beam dynamics for an advanced flash-radiography accelerator[J]. IEEE Transactions on Plasma Science, 2015, 43(12): 4123-4129. doi: 10.1109/TPS.2015.2496499
    [5] 施将君. 高能闪光照相引论[M]. 绵阳: 中物院流体物理研究所科协, 1998

    Shi Jiangjun. Introduction of high-energy flash radiography[M]. Mianyang: Scientific Book Series of IFP, 1998
    [6] Klasky M L. A correct flat field model for DARHT[R]. LA-UR-19-29164, 2019.
    [7] 王毅, 李勤, 刘云龙, 等. 用于直线感应加速器光源焦斑测量的双锥厚针孔结构设计[J]. 强激光与粒子束, 2019, 31:065102. (Wang Yi, Li Qin, Liu Yunlong, et al. Structure design of thick pinhole with double cones for spot size measurement of the linear induction accelerator light source[J]. High Power Laser and Particle Beams, 2019, 31: 065102 doi: 10.11884/HPLPB201931.180291

    Wang Yi, Li Qin, Liu Yunlong, et al. Structure design of thick pinhole with double cones for spot size measurement of the linear induction accelerator light source[J]. High Power Laser and Particle Beams, 2019, 31: 065102 doi: 10.11884/HPLPB201931.180291
    [8] Wu Yuanhui, Chen Y J. ENSOLVE: A simulation code for FXR LIA downstream section[C]//Proceedings of the 9th International Particle Accelerator Conference. 2018: 2271-2273.
    [9] Ekdahl C. Characterizing flash-radiography source spots[J]. Journal of the Optical Society of America A, 2011, 28(12): 2501-2509. doi: 10.1364/JOSAA.28.002501
    [10] 王毅, 李勤, 代志勇. 蒙特卡罗模拟分析电子束发射度对照射量空间分布影响[J]. 强激光与粒子束, 2017, 29:065006. (Wang Yi, Li Qin, Dai Zhiyong. Analysis on influence of beam emittance on spatial distribution of exposure using Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2017, 29: 065006 doi: 10.11884/HPLPB201729.170029

    Wang Yi, Li Qin, Dai Zhiyong. Analysis on influence of beam emittance on spatial distribution of exposure using Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2017, 29: 065006 doi: 10.11884/HPLPB201729.170029
    [11] Pöplau G, van Rienen U, Flöettmann K. 3D space charge calculations for bunches in the tracking code Astra[C]//Proceedings of EPAC. 2006: 2203-2205.
    [12] Zhu Jun. Design study for generating sub-femtosecond to femtosecond electron bunches for advanced accelerator development at SINBAD[D]. Hamburg: Universität Hamburg, 2017.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  497
  • HTML全文浏览量:  183
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-24
  • 修回日期:  2022-04-02
  • 录用日期:  2022-04-19
  • 网络出版日期:  2022-04-21
  • 刊出日期:  2022-06-17

目录

    /

    返回文章
    返回