Design and test of X-band high power loads
-
摘要: 利用三维电磁场仿真软件CST进行了圆形水室水负载的仿真设计,先后设计的两种不同规格的负载驻波比分别为1.032 5和1.055 3,在50 MW的峰值功率下,峰值场强分别为21.16 MV/m和17.57 MV/m;并探究了陶瓷片和水的介电性质对驻波比的影响;测试驻波比分别为1.058 2和1.076 3。对一种圆筒水负载进行了优化设计,结果表明其具有很高的功率耐受水平。最后设计了一种不锈钢干负载,对其吸收齿结构和长度进行了优化,使其更利于加工。使用ANSYS对干负载结构进行了热应力分析,结果显示,最高温度和最大应力分别为83.478 ℃和63.917 MPa,最大形变为0.072 971 mm。Abstract: In the research project of high performance free electron laser, it is necessary to absorb the residual power at the end of its acceleration structure. At the operating frequency of 11.424 GHz, the RF load with the VSWR (voltage standing wave ratio) of less than 1.1 and high power absorption capacity needs to be developed. The software CST (Computer Simulation Technology) is used to design the loads. For the cylindrical water chamber water load, the design VSWRs are 1.0325 and 1.0533; At 50 MW peak power, the peak field intensities are 21.16 MV/m and 17.57 MV/m; the test VSWRs are 1.0582 and 1.0763. The effect of dielectric properties of ceramic and water on VSWR is also investigated. For the cylinder-shaped water load, the simulation results show that it has a high power tolerance level. For the dry load, the length of the load and the structure of the absorbing tooth are optimized to make it more convenient for machining. The results of thermal stress analysis calculated by ANSYS show that the maximum temperature and stress are 83.478 ℃ and 63.917 MPa respectively, and the maximum deformation is 0.072 971 mm.
-
Key words:
- X-band /
- voltage standing wave ratio /
- high power /
- load /
- thermal stress analysis
-
表 1 负载设计要求
Table 1. Load design requirements
frequency/
GHzVSWR average absorbed
power/kWpeak absorbed
power/MW11.424 <1.1 3 50 表 2 10 GHz下水的介电性质
Table 2. Dielectric properties of water at 10 GHz
temperature/℃ relative dielectric constant loss tangent 15 49 0.7 25 55 0.54 35 58 0.44 45 59 0.4 55 60 0.36 65 59 0.32 75 57 0.28 -
[1] 赖龙伟, 冷用斌, 阎映炳, 等. 自由电子激光装置数字化束流位置信号处理器研制及应用[J]. 核技术, 2018, 41(7):43-49. (Lai Longwei, Leng Yongbin, Yan Yingbing, et al. Development and application of digital beam position measurement processor for FEL[J]. Nuclear Techniques, 2018, 41(7): 43-49 [2] 廖承恩. 微波技术基础[M]. 西安: 西安电子科技大学出版社, 1994: 270−271Liao Chengen. Fundamentals of microwave technology[M]. Xi’an: Xidian University Press, 1994: 270-271 [3] 丁海兵, 高冬平, 唐亮, 等. S波段高功率窗型水负载的设计[J]. 真空电子技术, 2016(4):26-28. (Ding Haibing, Gao Dongping, Tang Liang, et al. Design of an S-band high power window-type water load[J]. Vacuum Electronics, 2016(4): 26-28 doi: 10.3969/j.issn.1002-8935.2016.04.008 [4] 李沅锴. 波导结构水负载大功率计的研究[D]. 成都: 电子科技大学, 2014: 1-2Li Yuankai. The research of water load power meter with waveguide structure[D]. Chengdu: University of Electronic Science and Technology of China, 2014: 1-2 [5] 陈亮. 6.5-18.0GHz大功率双脊波导水负载的研制[D]. 成都: 电子科技大学, 2008, 12-16Chen Liang. Development of high power 6.5-18.0 GHz double ridge waveguide water load. Chengdu: University of Electronic Science and Technology of China, 2008, 12-16 [6] Eves E, Yakovlev V. Analysis of operational regimes of a high power water load[J]. Journal of Microwave Power and Electromagnetic Energy, 2002, 37(3): 127-144. doi: 10.1080/08327823.2002.11688475 [7] Liu Liang, Liu Fukun, Shan Jiafang, et al. Design of a new water load for S-band 750 kW continuous wave high power klystron used in EAST tokamak[J]. Plasma Science and Technology, 2007, 9(2): 223-226. doi: 10.1088/1009-0630/9/2/23 [8] Koert P, Macgibbon P, Beck W, et al. High power water load for lower hybrid current drive at 4.6 GHz on Alcator C-Mod[C]//IEEE 22nd Symposium on Fusion Engineering. 2007. [9] Krasnykh A , Maxwell T , Sheppard J , et al. Overview of high power vacuum dry RF load designs[C]//Proceeding of the 7th International Particle Accelerator Conference. 2016: 504-506 [10] 杨立霞. S波段大功率水负载的研制[J]. 真空电子技术, 2015(3):58-60,74. (Yang Lixia. The development of S-band high-power water load[J]. Vacuum Electronics, 2015(3): 58-60,74 doi: 10.3969/j.issn.1002-8935.2015.03.016 [11] Kuzikov S V, Rodin Y V, Vikharev A A. X-band high power loads[J]. Electromagnetic Waves and Electronic Systems, 2017, 22(1): 69-74. [12] Riddone G , Wuensch W, Matsumoto S, et al. High power evaluation of X-band high power loads[C]//Proceeding of Linear Accelerator Conference LINAC. 2010: 226-228 [13] Meng Xiangcong, Shi Jiaru, Zha Hao, et al. Development of high-power S-band load[J]. Nuclear Inst and Methods in Physics Research, A, 2019, 927: 209-213.