留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X波段高功率负载的优化设计与测试

李秦 柴熙源 唐运盖 王改 吴丛凤

李秦, 柴熙源, 唐运盖, 等. X波段高功率负载的优化设计与测试[J]. 强激光与粒子束, 2022, 34: 043007. doi: 10.11884/HPLPB202234.210451
引用本文: 李秦, 柴熙源, 唐运盖, 等. X波段高功率负载的优化设计与测试[J]. 强激光与粒子束, 2022, 34: 043007. doi: 10.11884/HPLPB202234.210451
Li Qin, Chai Xiyuan, Tang Yungai, et al. Design and test of X-band high power loads[J]. High Power Laser and Particle Beams, 2022, 34: 043007. doi: 10.11884/HPLPB202234.210451
Citation: Li Qin, Chai Xiyuan, Tang Yungai, et al. Design and test of X-band high power loads[J]. High Power Laser and Particle Beams, 2022, 34: 043007. doi: 10.11884/HPLPB202234.210451

X波段高功率负载的优化设计与测试

doi: 10.11884/HPLPB202234.210451
基金项目: 国家重点研发计划项目(2016YFA0401900);中央高校基本科研业务费专项资金(WK2310000098)
详细信息
    作者简介:

    李 秦,lq123123@mail.ustc.edu.cn

    通讯作者:

    吴丛凤,cfwu@ustc.edu.cn

  • 中图分类号: TN61

Design and test of X-band high power loads

  • 摘要: 利用三维电磁场仿真软件CST进行了圆形水室水负载的仿真设计,先后设计的两种不同规格的负载驻波比分别为1.032 5和1.055 3,在50 MW的峰值功率下,峰值场强分别为21.16 MV/m和17.57 MV/m;并探究了陶瓷片和水的介电性质对驻波比的影响;测试驻波比分别为1.058 2和1.076 3。对一种圆筒水负载进行了优化设计,结果表明其具有很高的功率耐受水平。最后设计了一种不锈钢干负载,对其吸收齿结构和长度进行了优化,使其更利于加工。使用ANSYS对干负载结构进行了热应力分析,结果显示,最高温度和最大应力分别为83.478 ℃和63.917 MPa,最大形变为0.072 971 mm。
  • 图  1  CST内水负载模型

    Figure  1.  Water load in CST

    图  2  水负载驻波比

    Figure  2.  VSWR of water load by CST

    图  3  水负载电场分布

    Figure  3.  Electric field of water load in CST

    图  4  水负载实物图

    Figure  4.  Water load

    图  5  陶瓷片的介电常数对驻波比影响

    Figure  5.  Effect of relative dielectric constant of ceramic on VSWR

    图  6  陶瓷片的损耗正切对驻波比影响

    Figure  6.  Effect of loss tangent of ceramic on VSWR

    图  7  水的介电常数对驻波比的影响

    Figure  7.  Effect of relative dielectric constant of water on VSWR

    图  8  水的损耗正切对驻波比的影响

    Figure  8.  Effect of loss tangent of water on VSWR

    图  9  CST内新水负载模型

    Figure  9.  New water load in CST

    图  10  新水负载驻波比

    Figure  10.  VSWR of new water load by CST

    图  11  新水负载电场分布

    Figure  11.  Electric field of water load in CST

    图  12  新水负载实物图

    Figure  12.  New water load

    图  13  水负载测量结果 (VSWR=1.0582)

    Figure  13.  Water load measurement result (VSWR=1.0582)

    图  14  新水负载测量结果 (VSWR=1.0763)

    Figure  14.  New water load measurement result (VSWR=1.0763)

    图  15  CST内圆筒水负载模型

    Figure  15.  Cylinder-shaped water load in CST

    图  16  圆筒水负载驻波比

    Figure  16.  VSWR of cylinder-shaped water load by CST

    图  17  圆筒水负载电场分布

    Figure  17.  Electric field of cylinder-shaped water load in CST

    图  18  CST内干负载模型

    Figure  18.  Dry load in CST

    图  19  正对 (a)和错开结构(b)

    Figure  19.  Aligned (a) and staggered structure (b)

    图  20  电场分布(正对结构)

    Figure  20.  Electric field in CST (aligned structure)

    图  21  电场分布(错开结构)

    Figure  21.  Electric field in CST (staggered structure)

    图  22  负载驻波比

    Figure  22.  VSWR of dry load by CST

    图  23  温度分布(正对结构)

    Figure  23.  Temperature distribution (aligned structure)

    图  24  温度分布(错开结构)

    Figure  24.  Temperature distribution (staggered structure)

    图  25  应力分布(正对结构)

    Figure  25.  Stress distribution (aligned structure)

    图  26  应力分布(错开结构)

    Figure  26.  Stress distribution (staggered structure)

    图  27  形变分布(正对结构)

    Figure  27.  Deformation distribution (aligned structure)

    图  28  形变分布(错开结构

    Figure  28.  Deformation distribution (staggered structure)

    图  29  耦合段长度对驻波比影响

    Figure  29.  Effect of coupling length on VSWR

    图  30  吸收齿半径对驻波比影响

    Figure  30.  Effect of absorption tooth radius on VSWR

    图  31  新干负载结构

    Figure  31.  Structure of the new dry load

    图  32  新干负载电场分布

    Figure  32.  Electric field in CST of the new dry load

    图  33  新干负载驻波比

    Figure  33.  VSWR of the new dry load by CST

    图  34  新干负载温度分布

    Figure  34.  Temperature distribution of the new dry load

    图  35  新干负载应力分布

    Figure  35.  Stress distribution of the new dry load

    图  36  新干负载形变分布

    Figure  36.  Deformation distribution of the new dry load

    表  1  负载设计要求

    Table  1.   Load design requirements

    frequency/
    GHz
    VSWRaverage absorbed
    power/kW
    peak absorbed
    power/MW
    11.424<1.1350
    下载: 导出CSV

    表  2  10 GHz下水的介电性质

    Table  2.   Dielectric properties of water at 10 GHz

    temperature/℃relative dielectric constantloss tangent
    15 49 0.7
    25 55 0.54
    35 58 0.44
    45 59 0.4
    55 60 0.36
    65 59 0.32
    75 57 0.28
    下载: 导出CSV
  • [1] 赖龙伟, 冷用斌, 阎映炳, 等. 自由电子激光装置数字化束流位置信号处理器研制及应用[J]. 核技术, 2018, 41(7):43-49. (Lai Longwei, Leng Yongbin, Yan Yingbing, et al. Development and application of digital beam position measurement processor for FEL[J]. Nuclear Techniques, 2018, 41(7): 43-49
    [2] 廖承恩. 微波技术基础[M]. 西安: 西安电子科技大学出版社, 1994: 270−271

    Liao Chengen. Fundamentals of microwave technology[M]. Xi’an: Xidian University Press, 1994: 270-271
    [3] 丁海兵, 高冬平, 唐亮, 等. S波段高功率窗型水负载的设计[J]. 真空电子技术, 2016(4):26-28. (Ding Haibing, Gao Dongping, Tang Liang, et al. Design of an S-band high power window-type water load[J]. Vacuum Electronics, 2016(4): 26-28 doi: 10.3969/j.issn.1002-8935.2016.04.008
    [4] 李沅锴. 波导结构水负载大功率计的研究[D]. 成都: 电子科技大学, 2014: 1-2

    Li Yuankai. The research of water load power meter with waveguide structure[D]. Chengdu: University of Electronic Science and Technology of China, 2014: 1-2
    [5] 陈亮. 6.5-18.0GHz大功率双脊波导水负载的研制[D]. 成都: 电子科技大学, 2008, 12-16

    Chen Liang. Development of high power 6.5-18.0 GHz double ridge waveguide water load. Chengdu: University of Electronic Science and Technology of China, 2008, 12-16
    [6] Eves E, Yakovlev V. Analysis of operational regimes of a high power water load[J]. Journal of Microwave Power and Electromagnetic Energy, 2002, 37(3): 127-144. doi: 10.1080/08327823.2002.11688475
    [7] Liu Liang, Liu Fukun, Shan Jiafang, et al. Design of a new water load for S-band 750 kW continuous wave high power klystron used in EAST tokamak[J]. Plasma Science and Technology, 2007, 9(2): 223-226. doi: 10.1088/1009-0630/9/2/23
    [8] Koert P, Macgibbon P, Beck W, et al. High power water load for lower hybrid current drive at 4.6 GHz on Alcator C-Mod[C]//IEEE 22nd Symposium on Fusion Engineering. 2007.
    [9] Krasnykh A , Maxwell T , Sheppard J , et al. Overview of high power vacuum dry RF load designs[C]//Proceeding of the 7th International Particle Accelerator Conference. 2016: 504-506
    [10] 杨立霞. S波段大功率水负载的研制[J]. 真空电子技术, 2015(3):58-60,74. (Yang Lixia. The development of S-band high-power water load[J]. Vacuum Electronics, 2015(3): 58-60,74 doi: 10.3969/j.issn.1002-8935.2015.03.016
    [11] Kuzikov S V, Rodin Y V, Vikharev A A. X-band high power loads[J]. Electromagnetic Waves and Electronic Systems, 2017, 22(1): 69-74.
    [12] Riddone G , Wuensch W, Matsumoto S, et al. High power evaluation of X-band high power loads[C]//Proceeding of Linear Accelerator Conference LINAC. 2010: 226-228
    [13] Meng Xiangcong, Shi Jiaru, Zha Hao, et al. Development of high-power S-band load[J]. Nuclear Inst and Methods in Physics Research, A, 2019, 927: 209-213.
  • 加载中
图(36) / 表(2)
计量
  • 文章访问数:  730
  • HTML全文浏览量:  296
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-25
  • 修回日期:  2021-12-13
  • 录用日期:  2021-12-23
  • 网络出版日期:  2021-12-29
  • 刊出日期:  2022-03-19

目录

    /

    返回文章
    返回