C/Ku band shared-aperture wide-angle scanning phased array antenna
-
摘要: 设计了一款具有高功率容量与宽角度扫描特性的C/Ku双频段共口径平面相控阵天线。在同一辐射口径内,相控阵天线包含有基于平面偶极子单元的C波段4×4阵列,以及基于混合零阶谐振贴片单元的Ku波段8×9阵列。所设计的相控阵天线的宽角度扫描性能归功于双频段阵元天线的宽波束辐射特性。下层混合零阶谐振贴片天线既能作为Ku波段的宽波束辐射单元,又能够为C波段的偶极子天线提供零反射相位,进而基于镜像原理拓宽偶极子天线的波束宽度。并且,对天线进行了介质埋入式设计,避免了空气击穿以提高天线系统功率容量。全波仿真结果表明,所提出的共口径相控阵天线在C和Ku双频段均实现了±45°的波束扫描,增益波动小于3 dB,天线阵列在各单元输入功率之和为1 W时功率容量达18.9 MW。Abstract: In this paper, a shared-aperture planar phased array antenna operated at C and Ku band with wide-angle scan and high-power capacity is designed. The proposed phased array contains a printed dipole element-based 4×4 C-band array and a Ku-band array composed of 9×8 hybrid zeroth-order resonance patch elements. The wide-angle scanning performance of the designed phased array attributes the success to the wide-beam radiation of the dual-band elements. The bottom zeroth-order resonance patch element can not only be used as the Ku-band wide-beam radiation element, but also supplies the zero-phased reflection for the C-band printed dipoles which generate the wide-beam patterns based on the image theory. Furthermore, the antenna is designed with all metals buried by substrates to avoid air breakdown, and thus to improve the power capacity of the phased array. Full-wave simulation results show that the designed array can obtain a ±45° beam scan with its gain fluctuation less than 3 dB in both C and Ku bands, and the power capacity of the array reaches 18.9 MW when the total input power is 1 W.
-
表 1 优化参数值
Table 1. Optimized parameter values
mm Ws Wh Wp Wk Wd R r H L G h 10.5 8.5 5.5 0.5 2.5 0.5 0.3 2 8.5 1 1.08 -
[1] 宋航. 共口径天线的研究与设计[D]. 成都: 电子科技大学, 2016: 1-10Song Hang. Study and design of shared-aperture antenna[D]. Chengdu: University of Electronic Science and Technology of China, 2016: 1-10 [2] Naishadham K, Li Ronglin, Li Yang, et al. A shared-aperture dual-band planar array with self-similar printed folded dipoles[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(2): 606-613. doi: 10.1109/TAP.2012.2216491 [3] Wang Zongxin, Xiao Lingwen, Fang Laiwang, et al. A design of E/Ka dual-band patch antenna with shared aperture[C]//Proceedings of 2014 Asia-Pacific Microwave Conference. 2014: 333-335. [4] Bai Chunxu, Cheng Yujian, Ding Yanrong, et al. A metamaterial-based S/X-band shared-aperture phased-array antenna with wide beam scanning coverage[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(6): 4283-4292. doi: 10.1109/TAP.2020.2970096 [5] Liu Shengying, Jiang Kaibo, Xu Guobing, et al. A dual-band shared aperture antenna array in Ku/Ka-bands for beam scanning applications[J]. IEEE Access, 2019, 7: 78794-78802. doi: 10.1109/ACCESS.2019.2922647 [6] Mao Chunxu, Gao S, Wang Yi, et al. A shared-aperture dual-band dual-polarized filtering-antenna-array with improved frequency response[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(4): 1836-1844. doi: 10.1109/TAP.2017.2670325 [7] Tao Mingcui, Wu Yiwen, Hao Zhangcheng. Compact orthogonal multiple-beam antenna with shared aperture[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(6): 873-877. doi: 10.1109/LAWP.2021.3060771 [8] Yan Bo, Zhang Yuanming, Li Long. Design of a dual-band shared-aperture antenna based on frequency selective surface[C]//Proceedings of 2013 International Symposium on Antennas & Propagation. 2013: 496-499. [9] 丁霄. 基于方向图可重构技术的相控阵大角度扫描特性研究[D]. 成都: 电子科技大学, 2013: 3-6Ding Xiao. Research on the performance of wide-angle scanning phased array based on pattern reconfigurable technology[D]. Chengdu: University of Electronic Science and Technology of China, 2013: 3-6 [10] Wang Ren, Wang Bingzhong, Ding Xiao, et al. Planar phased array with wide-angle scanning performance based on image theory[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(9): 3908-3917. doi: 10.1109/TAP.2015.2446999 [11] Li Xiangqiang, Liu Qingxiang, Zhang Jianqiong, et al. 16-element single-layer rectangular radial line helical array antenna for high-power applications[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 708-711. doi: 10.1109/LAWP.2010.2059371 [12] Ko S T, Lee J H. Hybrid zeroth-order resonance patch antenna with broad E-plane beamwidth[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(1): 19-25. doi: 10.1109/TAP.2012.2220315 [13] Wen Yaqing, Gao S, Wang Bingzhong, et al. Dual-polarized and wide-angle scanning microstrip phased array[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(7): 3775-3780. doi: 10.1109/TAP.2018.2835521 [14] 白芮欣. 基于人工磁导体的低剖面天线及最优结构的研究[D]. 太原: 太原理工大学, 2014: 41-45Bai Ruixin. Research on low profile antenna based on AMC and the optimal structure[D]. Taiyuan: Taiyuan University of Technology, 2014: 41-45 [15] Nasser S S S, Liu Wei, Chen Zhining. Wide bandwidth and enhanced gain of a low-profile dipole antenna achieved by integrated suspended metasurface[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(3): 1540-1544. doi: 10.1109/TAP.2018.2790161 [16] 赵玮琛, 张政权, 张健穹, 等. 侧馈式紧凑型扁波导螺旋阵列天线的设计[J]. 电子元件与材料, 2018, 37(6):78-82. (Zhao Weichen, Zhang Zhengquan, Zhang Jianqiong, et al. Design of helical array antenna fed from compact side-feed slab waveguide[J]. Electronic Components & Materials, 2018, 37(6): 78-82 [17] 周哲, 李相强, 刘庆想, 等. 一种高功率折线栅极化转换天线罩的设计[J]. 强激光与粒子束, 2018, 30:053005. (Zhou Zhe, Li Xiangqiang, Liu Qingxiang, et al. Design of a high power radome with meander-line polarizer[J]. High Power Laser and Particle Beams, 2018, 30: 053005 doi: 10.11884/HPLPB201830.170448