留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氘钛等离子体高压查尔特鞘层特性理论研究

沈伯昊 董烨 周前红 杨温渊 董志伟

沈伯昊, 董烨, 周前红, 等. 氘钛等离子体高压查尔特鞘层特性理论研究[J]. 强激光与粒子束, 2022, 34: 075011. doi: 10.11884/HPLPB202234.210457
引用本文: 沈伯昊, 董烨, 周前红, 等. 氘钛等离子体高压查尔特鞘层特性理论研究[J]. 强激光与粒子束, 2022, 34: 075011. doi: 10.11884/HPLPB202234.210457
Shen Bohao, Dong Ye, Zhou Qianhong, et al. Theoretical study on characteristics of high voltage Child-sheath of mixed D+ and Ti2+ plasmas[J]. High Power Laser and Particle Beams, 2022, 34: 075011. doi: 10.11884/HPLPB202234.210457
Citation: Shen Bohao, Dong Ye, Zhou Qianhong, et al. Theoretical study on characteristics of high voltage Child-sheath of mixed D+ and Ti2+ plasmas[J]. High Power Laser and Particle Beams, 2022, 34: 075011. doi: 10.11884/HPLPB202234.210457

氘钛等离子体高压查尔特鞘层特性理论研究

doi: 10.11884/HPLPB202234.210457
基金项目: 国家自然科学基金项目(11875094);国家自然科学基金委员会与中国工程物理研究院联合基金项目(U1730247)
详细信息
    作者简介:

    沈伯昊,shenbohao20@gscaep.ac.cn

    通讯作者:

    董 烨,dongye0682@sina.com

  • 中图分类号: TN752.5

Theoretical study on characteristics of high voltage Child-sheath of mixed D+ and Ti2+ plasmas

  • 摘要: 建立了混合多组分等离子体高压查尔特鞘层动力学模型,数值研究了氘钛等离子体高压查尔特鞘层特性。理论与数值研究结果表明,提升D+离子比例、降低D+离子及Ti2+离子入鞘速度、降低等离子体密度等方式,均会有效增加鞘层厚度,并降低靶面场强幅值,这些方式有利于离子汇聚传输和降低靶面击穿风险。随加速电压的增加,离子引出稳定工作区域范围呈现先增加后减小的趋势。增加D+离子比例、减小D+离子及Ti2+离子入鞘速度,均会显著增加离子引出稳定工作区域范围。
  • 图  1  氘钛等离子体中性区域和高压鞘层区域示意图

    Figure  1.  Schematic of neutral region and high voltage sheath of mixed D+ and Ti2+ plasmas

    图  2  鞘层厚度及靶面场强随等离子密度变化关系

    Figure  2.  Sheath depth and electric-field strength as a function of ion density

    图  3  鞘层厚度及靶面场强随D+离子占比变化关系

    Figure  3.  Sheath depth and electric-field strength as a function of D+ proportion

    图  4  鞘层厚度及靶面场强随D+入鞘速度变化关系

    Figure  4.  Sheath depth and electric-field strength vs sheath-entering velocity of D+

    图  5  鞘层厚度及靶面场强随Ti2+入鞘速度变化关系

    Figure  5.  Sheath depth and electric-field strength vs sheath-entering velocity of Ti2+

    图  6  鞘层厚度及靶面场强随加速电压变化关系

    Figure  6.  Sheath depth and electric-field strength as a function of accelerating voltage

    图  7  组分电流密度随电压变化关系(保持鞘层厚度不变)

    Figure  7.  Current density components vs voltage (fixed sheath depth)

    图  8  等离子体密度和总电流密度随电压变化关系(保持鞘层厚度不变)

    Figure  8.  Total current density and interface plasma density vs voltage (fixed sheath depth)

    图  9  组分电流密度随加速电压变化关系(保持靶面场强不变)

    Figure  9.  Current density components vs voltage (fixed Emax)

    图  10  等离子体密度及总电流密度随加速电压变化关系(保持靶面场强不变)

    Figure  10.  Total current density and interface plasma density vs voltage (fixed Emax)

    图  11  多组分混合离子引出稳定工作区域图

    Figure  11.  Stable operating region for extraction of mixed plasmas

  • [1] Brown I G. The physics and technology of ion sources[M]. 2nd ed. Weinheim: Wiley-VCH, 2004.
    [2] Boxman R L, Goldsmith S, Greenwood A. Twenty-five years of progress in vacuum arc research and utilization[J]. IEEE Transactions on Plasma Science, 1997, 25(6): 1174-1186. doi: 10.1109/27.650894
    [3] Boxman R L, Sanders D M, Martin P J. Handbook of vacuum arc science and technology[M]. Park Ridge: Noyes Publications, 1995.
    [4] Benilov M S. Understanding and modelling plasma-electrode interaction in high-pressure arc discharges: a review[J]. Journal of Physics D: Applied Physics, 2008, 41: 144001. doi: 10.1088/0022-3727/41/14/144001
    [5] Kovaleski S D. Calculation of the ion extraction boundary of a plasma ion source[J]. IEEE Transactions on Plasma Science, 2006, 34(1): 23-27. doi: 10.1109/TPS.2005.863565
    [6] 金大志, 戴晶怡, 杨中海. 等离子体离子源发射面的理论计算与数值模拟[J]. 强激光与粒子束, 2008, 20(4):679-682. (Jin Dazhi, Dai Jingyi, Yang Zhonghai. Estimation and simulation of emitting surface in plasma ion source[J]. High Power Laser and Particle Beams, 2008, 20(4): 679-682

    Jin Dazhi, Dai Jingyi, Yang Zhonghai. Estimation and simulation of emitting surface in plasma ion source[J]. High Power Laser and Particle Beams, 2008, 20(4): 679-682
    [7] Lieberman M A, Lichtenberg A J. Principles of plasma discharges and materials processing[M]. 2nd ed. Hoboken: Wiley-Interscience, 2005.
    [8] Riemann K U. The Bohm criterion and sheath formation[J]. Journal of Physics D:Applied Physics, 1991, 24(4): 493-518. doi: 10.1088/0022-3727/24/4/001
    [9] Benilov M S. The Child-Langmuir law and analytical theory of collisionless to collision-dominated sheaths[J]. Plasma Sources Science and Technology, 2009, 18: 014005. doi: 10.1088/0963-0252/18/1/014005
    [10] Brown I G, Monteiro O R, Bilek M M M. High voltage sheath behavior in a drifting plasma[J]. Applied Physics Letters, 1999, 74(17): 2426-2428. doi: 10.1063/1.123869
    [11] Anders A. Breakdown of the high-voltage sheath in metal plasma immersion ion implantation[J]. Applied Physics Letters, 2000, 76(1): 28-30. doi: 10.1063/1.125645
    [12] Bilek M M M. Effect of sheath evolution on metal ion implantation in a vacuum arc plasma source[J]. Journal of Applied Physics, 2001, 89(2): 923-927. doi: 10.1063/1.1331072
    [13] 陈磊, 金大志, 石磊, 等. 混合离子束阴极真空弧等离子体鞘层特性[J]. 强激光与粒子束, 2012, 24(8):1856-1860. (Chen Lei, Jin Dazhi, Shi Lei, et al. Sheath characteristics of vacuum arc plasma for mixed ion beam[J]. High Power Laser and Particle Beams, 2012, 24(8): 1856-1860 doi: 10.3788/HPLPB20122408.1856

    Chen Lei, Jin Dazhi, Shi Lei, et al. Sheath characteristics of vacuum arc plasma for mixed ion beam[J]. High Power Laser and Particle Beams, 2012, 24(8): 1856-1860 doi: 10.3788/HPLPB20122408.1856
    [14] 董攀, 李杰, 郑乐, 等. 真空弧放电TiH合金阴极表面形貌分析[J]. 强激光与粒子束, 2018, 30:014001. (Dong Pan, Li Jie, Zheng Le, et al. Surface morphology analysis of TiH cathode in vacuum arc discharge[J]. High Power Laser and Particle Beams, 2018, 30: 014001 doi: 10.11884/HPLPB201830.170356

    Dong Pan, Li Jie, Zheng Le, et al. Surface morphology analysis of TiH cathode in vacuum arc discharge[J]. High Power Laser and Particle Beams, 2018, 30: 014001 doi: 10.11884/HPLPB201830.170356
    [15] Chen Lei, Jin Dazhi, Cheng Liang, et al. Ion charge state distribution and ion velocities in the titanium hydride cathodic vacuum arc plasmas[J]. Vacuum, 2012, 86(7): 813-816. doi: 10.1016/j.vacuum.2011.01.014
  • 加载中
图(11)
计量
  • 文章访问数:  544
  • HTML全文浏览量:  202
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-30
  • 修回日期:  2022-01-17
  • 网络出版日期:  2022-07-04
  • 刊出日期:  2022-05-12

目录

    /

    返回文章
    返回