留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

50 kV紧凑型自动化纳秒脉冲源的研制

谢霖燊 石凌 王伟

谢霖燊, 石凌, 王伟. 50 kV紧凑型自动化纳秒脉冲源的研制[J]. 强激光与粒子束, 2022, 34: 075019. doi: 10.11884/HPLPB202234.210465
引用本文: 谢霖燊, 石凌, 王伟. 50 kV紧凑型自动化纳秒脉冲源的研制[J]. 强激光与粒子束, 2022, 34: 075019. doi: 10.11884/HPLPB202234.210465
Peng Chao, Lei Zhifeng, Zhang Zhangang, et al. Measurement and simulation of terrestrial atmospheric neutron spectrum in typical regions of China[J]. High Power Laser and Particle Beams, 2023, 35: 059001. doi: 10.11884/HPLPB202335.220353
Citation: Xie Linshen, Shi Ling, Wang Wei. Development of 50 kV compact automatic nanosecond pulse source[J]. High Power Laser and Particle Beams, 2022, 34: 075019. doi: 10.11884/HPLPB202234.210465

50 kV紧凑型自动化纳秒脉冲源的研制

doi: 10.11884/HPLPB202234.210465
基金项目: 西北核技术研究所实验室建设项目(16052003);强脉冲辐射环境模拟与效应国家重点实验室基金项目(SKLIPR1901Z)
详细信息
    作者简介:

    谢霖燊,xielinshen@nint.ac.cn

  • 中图分类号: TN78

Development of 50 kV compact automatic nanosecond pulse source

  • 摘要: 介绍了一种50 kV紧凑型自动化纳秒脉冲源,输出脉冲幅值1~50 kV连续可调,输出前沿约2 ns,脉宽约21 ns,搭配有界波导波天线,可建立满足IEC61000-2-9标准要求的电磁环境。该脉冲源采用电容直流充放电的方法实现输出电压连续可调,通过改变储能电容大小的方法实现输出脉冲脉宽可调。研制了一套远程光控的控制系统实现脉冲源的全自动化运行。该脉冲源可用于绝缘材料击穿特性试验,以及外接导波天线可产生特定的电磁环境等。通过设计和选用更高耐压的储能电容、充电绝缘子等部件,脉冲源可输出更高的电压。
  • 高压纳秒脉冲源在加速器技术、X射线、电磁脉冲效应等多个领域应用广泛[1-4]。在电磁脉冲效应研究中,高压脉冲源是电磁脉冲模拟器的关键组成部分。随着高空核爆电磁脉冲(HEMP)环境标准前沿缩短,需要研制一台快前沿高压脉冲源,与有界波电磁脉冲模拟器配套,建立与IEC61000-2-9标准相近的电磁环境[5],为开展抗HEMP效应研究提供工作环境。采用同轴型结构,电容放电的技术方案的纳秒脉冲源可产生满足百千伏幅值,符合IEC指标要求的纳秒脉冲[6-9]。本文研制的紧凑型自动化纳秒脉冲源采用低电感同轴结构,内置可快速更换的陶瓷电容实现脉宽可调,配套自动化控制系统,输出电压(500 V~50 kV范围内)连续可调。该脉冲源可直接驱动导波天线产生符合IEC标准的电磁脉冲环境,也可用于绝缘材料击穿特性试验等研究。

    输出电压低于100 kV时,电磁脉冲模拟器的高压脉冲源一般采用电容直接放电[6-14]。原理如图1所示:R为负载等效阻抗,C为脉冲源放电回路等效电容,L为脉冲源放电回路等效电感,K为等效开关。tr为脉冲源输出脉冲波形前沿,t50%为脉冲源输出脉冲波形脉宽。当R取120 Ω时,根据IEC61000-2-9标准和式(1),(2),t50%=23 ns,那么C≈278 pF;tr<3 ns,则L<163 nH。

    图  1  脉冲源等效电路原理图
    Figure  1.  Schematic diagram of the pulse source
    tr=2.2L/R
    (1)
    t50%=0.69RC
    (2)

    采用定制陶瓷或膜电容,C的容值比较容易实现。因此电容脉冲源设计的难点在于选取开关K和适合的结构使得脉冲源放电回路电感L满足要求。

    研制的纳秒脉冲源结构如图2所示。该脉冲源最大直径190 mm,长度295 mm。输出杆一端通过弹簧结构与电容地极板实现电连接,另一端与负载(例如导波天线上极板)相连。脉冲源通过接地金属外筒接地。电容地极板,陶瓷电容,电容高压极板连成一体,电容高压极板固定在电容高压端支撑绝缘子与充电引入绝缘子上,可伸缩电极与电容高压极板构成气体间隙开关。通过更换不同容量的陶瓷电容(或膜电容),并调整输出杆长度与之配合,即可方便调整脉冲源输出脉宽。输出绝缘筒与接地金属外筒构成了一个绝缘腔室,可内充气体绝缘介质提高陶瓷电容的充电电压。

    图  2  脉冲源结构
    Figure  2.  Structural design of pulse source
    (1-output insulated barrel, 2-earthing metal barrel, 3-the output shaft, 4-capacitance ground electrode, 5-ceramic capacitor, 6-capacitor high voltage plate, 7-the insulator of charge leads, 8-the flexible electrode, 9-air cylinder, 10-the insulator supported the high voltage end of the capacitor)

    脉冲源工作过程如下:首先给绝缘腔室充入预设气压的绝缘气体;其次高压电源通过充电引入绝缘子给陶瓷电容充电;当电压达到预设值时,气缸动作,顶出可伸缩电极,将气体间隙开关短路,电容高压极板接地,此时在负载上产生一个与充电电压极性相反的纳秒前沿高压脉冲。

    高压电源应及时断电,并将可伸缩电极推出,间隙开关恢复,准备下一次试验。此工作流程可通过自动控制系统自动运行。

    脉冲源控制系统需要监测充电电压、腔体气压两个模拟量,控制腔体充放气,气缸顶出气腔充放气,气缸推进气腔充放气,充电电压升降压控制等几个控制量。可编程逻辑控制器(Programmable Logic Controller,PLC)可以实现上述参数的读取和控制[15]。我们选取了OMRON CPM2A作为脉冲源的控制器,采用光电隔离+组态软件HMIBuilder实现了整个工作流程远程自动化的可视化状态监控。

    首先预设腔体气压和充电电压,其次闭合高压电源,启动升压,实时监测充电电压,与预设电压进行比较,当满足充电电压不小于预设电压条件时充电完成,控制气缸顶出气腔充气,将开关电极顶出,高压电源断电,停留2 s后,将气缸推回气腔充气,将开关电极推回。脉冲源的工作流程如图3所示。

    图  3  脉冲源工作流程图
    Figure  3.  Work flow diagram of the pulse source

    该流程通过PLC编程实现自动运行。利用组态软件HMIBuilder实现了可视化状态监控,控制界面如图4所示。在控制界面上点击总启动按钮,即可自动完成上述流程,也可分步手动实现各个流程步骤。

    图  4  控制系统界面
    Figure  4.  Interface of control system

    将纳秒脉冲源与有界波模拟器导波天线相连,测得导波天线内的典型电场波形如图5所示。前沿2.1 ns,半宽23.6 ns,满足IEC标准中关于前沿和半宽的要求。

    图  5  典型电场波形
    Figure  5.  Typical electric field waveform

    间隙开关为气体开关,火花通道电阻和电感对输出脉冲前沿的影响不可忽略,因此通过调节绝缘腔室所充绝缘介质的种类和气压可实现间隙开关的击穿时刻控制,从而实现输出波形的前沿调整。

    本文研制的紧凑型自动化纳秒脉冲源,通过选用更高耐压的电容以及绝缘子,脉冲源可以工作在更高电压。当其他条件不变时,脉冲源输出电压前沿随着充电电压提高而变大。脉冲源外接有界波模拟器导波天线时,可以产生满足IEC标准的电磁环境。脉冲源采用自动化控制方式,通过修改程序设置,即可实现脉冲源自动循环运行,从而实现脉冲源连续自动运行。脉冲源结构简单,元件易更换,远程光电隔离使得其能够在更多场合发挥作用。

  • 图  1  脉冲源等效电路原理图

    Figure  1.  Schematic diagram of the pulse source

    图  2  脉冲源结构

    Figure  2.  Structural design of pulse source

    (1-output insulated barrel, 2-earthing metal barrel, 3-the output shaft, 4-capacitance ground electrode, 5-ceramic capacitor, 6-capacitor high voltage plate, 7-the insulator of charge leads, 8-the flexible electrode, 9-air cylinder, 10-the insulator supported the high voltage end of the capacitor)

    图  3  脉冲源工作流程图

    Figure  3.  Work flow diagram of the pulse source

    图  4  控制系统界面

    Figure  4.  Interface of control system

    图  5  典型电场波形

    Figure  5.  Typical electric field waveform

  • [1] 王莹, 孙元章, 阮江军, 等. 脉冲功率科学与技术[M]. 北京: 北京航空航天大学出版社, 2010

    Wang Ying, Sun Yuanzhang, Ruan Jiangjun, et al. Science and technology on pulsed power[M]. Beijing: Beihang University Press, 2010
    [2] 曾正中. 实用脉冲功率技术引论[M]. 西安: 陕西科学技术出版社, 2003

    Zeng Zhengzhong. Introduction of pulsed power technology[M]. Xi’an: Shaanxi Science and Technology Press, 2003
    [3] 周璧华, 陈彬, 石立华. 电磁脉冲及其工程防护[M]. 北京: 国防工业出版社, 2003

    Zhou Bihua, Chen Bin, Shi Lihua. EMP and EMP protection[M]. Beijing: National Defense Industry Press, 2003
    [4] 邱爱慈. 脉冲功率技术应用[M]. 西安: 陕西科学技术出版社, 2016

    Qiu Aici. Application of pulsed power technology[M]. Xi’an: Shaanxi Science and Technology Press, 2016
    [5] 谢彦召, 王赞基, 王群书, 等. 高空核爆电磁脉冲波形标准及特征分析[J]. 强激光与粒子束, 2003, 15(8):781-787. (Xie Yanzhao, Wang Zanji, Wang Qunshu, et al. High altitude nuclear electromagnetic pulse waveform standards: a review[J]. High Power Laser and Particle Beams, 2003, 15(8): 781-787

    Xie Yanzhao, Wang Zanji, Wang Qunshu, et al. High altitude nuclear electromagnetic pulse waveform standards: a review[J]. High Power Laser and Particle Beams, 2003, 15(8): 781-787
    [6] 孙凤举, 曾江涛, 赵团, 等. 一种开关与电容器一体化的快前沿核电磁脉冲源: CN2001010291515.3[P]. 2011-04-20

    Sun Fengju, Zeng Jiangtao, Zhao Tuan, et al. A fast front nuclear power magnetic pulse source integrating switch and capacitor: CN2001010291515.3[P]. 2011-04-20
    [7] 孙凤举, 曾江涛, 尹佳辉, 等. 前沿2ns输出电压10~120 kV连续可调的电磁脉冲源[J]. 抗核加固, 2009, 26(3):35-39. (Sun Fengju, Zeng Jiangtao, Yin Jiahui, et al. 2ns risetime, 10~120 kV continuously adjustable electromagnetic pulse source[J]. Antinuclear Reinforcement, 2009, 26(3): 35-39

    Sun Fengju, Zeng Jiangtao, Yin Jiahui, et al. 2ns risetime, 10~120kV continusly adjustable electromagnetic pulse source[J]. Antinuclear Reinforcement, 2009, 26(3): 35-39
    [8] 孙蓓云, 谢彦召, 相辉, 等. 50kV, 1ns前沿高压脉冲源的研制[J]. 核电子学与探测技术, 2007, 27(2):280-282. (Sun Beiyun, Xie Yanzhao, Xiang Hui, et al. 50kV, 1ns rise time high voltage pulse generator[J]. Nuclear Electronics & Detection Technology, 2007, 27(2): 280-282 doi: 10.3969/j.issn.0258-0934.2007.02.032

    Sun Beiyun, Xie Yanzhao, Xiang Hui, et al. 50kV, 1ns rise time high voltage pulse generator[J]. Nuclear Electronics & Detection Technology, 2007, 27(2): 280-282 doi: 10.3969/j.issn.0258-0934.2007.02.032
    [9] 何小平, 汤俊萍, 孙蓓云, 等. 60kV同轴快沿脉冲源研制与测试[J]. 强激光与粒子束, 2006, 18(3):501-504. (He Xiaoping, Tang Junping, Sun Beiyun, et al. Development and test of 60kV coaxial fast rising pulse source[J]. High Power Laser and Particle Beams, 2006, 18(3): 501-504

    He Xiaoping, Tang Junping, Sun Beiyun, et al. Development and test of 60kV coaxial fast rising pulse source[J]. High Power Laser and Particle Beams, 2006, 18(3): 501-504
    [10] 田彦民, 许日, 孙凤举, 等. 一种100kV快前沿脉冲触发器[J]. 高电压技术, 2002, 28(s1):21-22,25. (Tian Yanmin, Xu Ri, Sun Fengju, et al. 100kV triggering generator with fast rise time[J]. High Voltage Engineering, 2002, 28(s1): 21-22,25

    Tian Yanmin, Xu Ri, Sun Fengju, et al. 100kV triggering generator with fast rise time[J]. High Voltage Engineering, 2002, 28(s1): 21-22, 25
    [11] 尹佳辉, 孙凤举, 邱爱慈, 等. 多组多路输出100kV快前沿电脉冲触发系统[J]. 强激光与粒子束, 2008, 20(12):2096-2100. (Yin Jiahui, Sun Fengju, Qiu Aici, et al. Multi-module and multi-output 100kV triggering generator system with fast rise time and low jitter[J]. High Power Laser and Particle Beams, 2008, 20(12): 2096-2100

    Yin Jiahui, Sun Fengju, Qiu Aici, et al. Multi-module and multi-output 100kV triggering generator system with fast rise time and low jitter[J]. High Power Laser and Particle Beams, 2008, 20(12): 2096-2100
    [12] 尹佳辉, 刘鹏, 孙凤举, 等. 电容快放电型触发器的电路分析与设计[J]. 高电压技术, 2011, 37(4):975-981. (Yin Jiahui, Liu Peng, Sun Fengju, et al. Analysis and design of capacitor-fast-discharging trigger generator[J]. High Voltage Engineering, 2011, 37(4): 975-981

    Yin Jiahui, Liu Peng, Sun Fengju, et al. Analysis and design of capacitor-fast-discharging trigger generator[J]. High Voltage Engineering, 2011, 37(4): 975-981
    [13] 尹佳辉, 曾江涛, 孙凤举, 等. 低抖动快前沿高电压重复率触发器[J]. 强激光与粒子束, 2011, 23(10):2836-2840. (Yin Jiahui, Zeng Jiangtao, Sun Fengju, et al. Repetitive trigger generator with low jitter and fast rise time[J]. High Power Laser and Particle Beams, 2011, 23(10): 2836-2840 doi: 10.3788/HPLPB20112310.2836

    Yin Jiahui, Zeng Jiangtao, Sun Fengju, et al. Repetitive trigger generator with low jitter and fast rise time[J]. High Power Laser and Particle Beams, 2011, 23(10): 2836-2840 doi: 10.3788/HPLPB20112310.2836
    [14] 谢霖燊, 石凌, 孙楚昱. 一种脉宽可调的快前沿高压脉冲源及脉宽可调的快前沿高压脉冲源系统: CN202121144884. X[P]. 2021-12-24

    Xie Linshen, Shi Ling, Sun Chuyu. A fast front high voltage pulse source with adjustable pulse width and a fast front high voltage pulse source system with adjustable pulse width: CN202121144884. X[P]. 2021-12-24
    [15] 李盛举, 任晓明, 蔡咏祥. 冲击电压发生器的PLC控制设计[J]. 上海电机学院学报, 2020, 23(3):149-154. (Li Shengju, Ren Xiaoming, Cai Yongxiang. PLC control design of impulse voltage generator[J]. Journal of Shanghai Dianji University, 2020, 23(3): 149-154 doi: 10.3969/j.issn.2095-0020.2020.03.005

    Li Shengju, Ren Xiaoming, Cai Yongxiang. PLC control design of impulse voltage generator[J]. Journal of Shanghai Dianji University, 2020, 23(3): 149-154 doi: 10.3969/j.issn.2095-0020.2020.03.005
  • 加载中
图(5)
计量
  • 文章访问数:  964
  • HTML全文浏览量:  244
  • PDF下载量:  179
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-04
  • 修回日期:  2022-04-11
  • 网络出版日期:  2022-06-16
  • 刊出日期:  2022-05-12

目录

/

返回文章
返回