Analytical method of triplate transmission lines configuration
-
摘要: 在考虑不等宽度三平板传输线的极板边缘效应和极板厚度的条件下,建立了单位长度电容、特性阻抗和各位置电场强度幅值的解析求解方法。该方法利用保角变换,将三平板传输线的不规则场边界变换为规则边界,所得结果是不带有任何近似的准确值。该方法计算结果与利用商业软件Ansoft进行模拟所得结果一致,证明该方法正确且可行。Abstract: Triplate transmission line is widely used in huge pulsed power facilities. However, the accurate circuit parameters of the triplate transmission line are difficult to obtain because of three factors. The first one is that the widths of the anode and cathode plates are different, the second one is that the plates’ thickness cannot be ignored, and the third one is that the electromagnetic field near the edges of the plates is seriously distorted. Taking all these three factors into consideration, an analytical method was established to obtain the capacitance per meter, the characteristic impedance, and the electric field magnitudes of the triplate transmission line. In this method, the distorted boundaries are transformed into regular boundaries based on conformal mapping and accurate results are obtained without approximation. Results obtained by this method are the same as those obtained by electromagnetic simulation with a commercial code called Ansoft, which indicates the correctness of this method.
-
表 1 三个阴阳极板间距不同的三平板传输线模型的单位长度电容C和特性阻抗Z0计算结果
Table 1. C and Z0 of three different triplate transmission lines with different distances between the anodes and cathodes
model h1/m h2/m d1/m d2/m d3/m C/nF Z0/Ω analytical method Ansoft analytical method Ansoft 1 1.0 2.0 0.1 4.0 4.1 1.85 1.86 16.0 15.9 2 1.0 2.0 0.1 3.0 3.1 2.18 2.19 13.5 13.5 3 1.0 2.0 0.1 2.0 2.1 2.81 2.81 10.5 10.5 -
[1] Zou Wenkang, Guo Fan, Chen Lin, et al. Full circuit calculation for electromagnetic pulse transmission in a high current facility[J]. Physical Review Special Topics - Accelerators and Beams, 2014, 17: 110401. doi: 10.1103/PhysRevSTAB.17.110401 [2] 薛创, 丁宁, 孙顺凯, 等. 脉冲功率驱动器与Z箍缩负载耦合的全电路数值模拟[J]. 物理学报, 2014, 63:125207. (Xue Chuang, Ding Ning, Sun Shunkai, et al. Full circuit model for coupling pulsed power driver with Z-pinch load[J]. Acta Physica Sinica, 2014, 63: 125207 doi: 10.7498/aps.63.125207Xue Chuang, Ding Ning, Sun Shunkai, et al. Full circuit model for coupling pulsed power driver with Z-pinch load[J]. Acta Physica Sinica, 2014, 63: 125207 doi: 10.7498/aps.63.125207 [3] 薛创, 丁宁, 张扬, 等. 聚龙一号电磁脉冲形成与传输过程的全电路模拟[J]. 强激光与粒子束, 2016, 28:015014. (Xue Chuang, Ding Ning, Zhang Yang, et al. Full circuit simulation for electromagnetic pulse forming and transmission in the PTS facility[J]. High Power Laser and Particle Beams, 2016, 28: 015014Xue Chuang, Ding Ning, Zhang Yang, et al. Full circuit simulation for electromagnetic pulse forming and transmission in the PTS facility[J]. High Power Laser and Particle Beams, 2016, 28: 015014 [4] 毛重阳, 薛创, 肖德龙, 等. 聚龙一号主开关导通时刻对负载电流的影响[J]. 强激光与粒子束, 2019, 31:015001. (Mao Chongyang, Xue Chuang, Xiao Delong, et al. Full circuit simulation for influence of the laser-triggered gas switches’ closing time on load current in PTS facility[J]. High Power Laser and Particle Beams, 2019, 31: 015001Mao Chongyang, Xue Chuang, Xiao Delong, et al. Full circuit simulation for influence of the laser-triggered gas switches’ closing time on load current in PTS facility[J]. High Power Laser and Particle Beams, 2019, 31: 015001 [5] Corcoran P A, Whitney B A, Bailey V L, et al. Circuit modeling techniques applied to ZR[C]//Proceedings of the 2009 IEEE Pulsed Power Conference. Washington, DC, USA: IEEE, 2009: 150-155. [6] 毛重阳, 薛创, 肖德龙, 等. "聚龙一号"4层绝缘堆和真空区电路模拟方法[J]. 强激光与粒子束, 2020, 32:025004. (Mao Chongyang, Xue Chuang, Xiao Delong, et al. Simulation method of quadruple-level circuit model for stack and vacuum section of Julong-I facility[J]. High Power Laser and Particle Beams, 2020, 32: 025004Mao Chongyang, Xue Chuang, Xiao Delong, et al. Simulation method of quadruple-level circuit model for stack and vacuum section of Julong-I facility[J]. High Power Laser and Particle Beams, 2020, 32: 025004 [7] 王新稳. 复解析保角变换在电磁工程中的应用研究[D]. 西安: 西安电子科技大学, 2011: 70-78Wang Xinwen. Complex analytical conformal mapping application in the electromagnetic engineering[D]. Xi’an: Xidian University, 2011: 70-78 [8] Cohn S B. Problems in strip transmission lines[J]. IRE Transactions on Microwave Theory and Techniques, 1955, 3(2): 119-126. doi: 10.1109/TMTT.1955.1124922 [9] 李祥伟, 常安碧, 宋法伦, 等. 平板型阶跃式变阻抗线特性[J]. 强激光与粒子束, 2013, 25(4):1040-1044. (Li Xiangwei, Chang Anbi, Song Falun, et al. Properties of parallel-plate stepped variable-impedance lines[J]. High Power Laser and Particle Beams, 2013, 25(4): 1040-1044 doi: 10.3788/HPLPB20132504.1040Li Xiangwei, Chang Anbi, Song Falun, et al. Properties of parallel-plate stepped variable-impedance lines[J]. High Power Laser and Particle Beams, 2013, 25(4): 1040-1044 doi: 10.3788/HPLPB20132504.1040 [10] Matzen M K, Atherton B W, Cuneo M E, et al. The refurbished Z facility: capabilities and recent experiments[J]. Acta Physica Polonica A, 2009, 115(6): 956-958. doi: 10.12693/APhysPolA.115.956 [11] Deng Jianjun, Shi Jinshui, Xie Weiping, et al. Overview of pulsed power research at CAEP[J]. IEEE Transactions on Plasma Science, 2015, 43(8): 2760-2765. doi: 10.1109/TPS.2015.2452192 [12] 关永超, 王勐, 丰树平, 等. 高功率低阻抗三平板传输线的设计[J]. 强激光与粒子束, 2010, 22(3):519-523. (Guan Yongchao, Wang Meng, Feng Shuping, et al. Design for high power and low impedance triplate transmission line[J]. High Power Laser and Particle Beams, 2010, 22(3): 519-523 doi: 10.3788/HPLPB20102203.0519Guan Yongchao, Wang Meng, Feng Shuping, et al. Design for high power and low impedance triplate transmission line[J]. High Power Laser and Particle Beams, 2010, 22(3): 519-523 doi: 10.3788/HPLPB20102203.0519 [13] 刘润华. 保角变换在电磁场边值问题中的研究及应用[D]. 重庆: 重庆师范大学, 2008: 7Liu Runhua. Application of conformal mapping about boundary value problem of electromagnetism field[D]. Chongqing: Chongqing Normal University, 2008: 7