Fast pulse generation technology based on explosive driven ferroelectric generators
-
摘要: 以发展轻小型高电压脉冲驱动源为出发点,提出采用爆炸驱动铁电体作为初级电源,通过电感储能与电爆炸丝断路开关进行脉冲压缩和功率放大,探索基于爆炸驱动铁电体电源的小型化高电压快脉冲产生技术。从爆炸驱动铁电体电源的全电路模型和铁电陶瓷材料特性出发,通过理论分析和仿真研究,分别对大电流模式和高电压模式的爆炸驱动铁电体电源的物理参数进行了设计,获得了铁电体电源工作模式和电路参数对产生高电压脉冲的影响规律,认为铁电体电源高电压模式更适合于与断路开关技术结合产生高电压快脉冲,并通过实验对该技术原理进行了验证。实验中铁电体电源输出电流约360 A、脉宽约3.8 μs,对17.5 nF电容器充电至75 kV,电容器放电后在电爆炸断路开关中产生峰值大于12 kA的脉冲电流,最终在X射线二极管负载上获得了电压峰值大于180 kV、前沿3 ns、脉宽30 ns、电流峰值3.4 kA的高电压快脉冲。Abstract: To develop a light and small high voltage pulsed power source, an innovative fast pulse technology based on an explosive driven ferroelectric generator (EDFEG) is investigated. An EDFEG is used as the primary power supply, inductive energy storage technology and an electrical exploding opening switch (EEOS) are used to generate a high-voltage fast pulse. On the basis of full-circuit simulation model of EDFEGs and the material properties of ferroelectric ceramics, the circuit simulation research on this fast pulse technology is carried out. The simulation results reveal the influence of circuit parameters on high voltage pulse generation. The research shows that the high-voltage mode of EDFEGs is more suitable for generating high-voltage fast pulse combined with EEOS technology. As a result, the principle of this technology is verified in experiments. In the experiment, the output current of an EDFEG was about 360 A and its pulse width was about 3.8 μs. The charging voltage of a 17.5 nF capacitor was 75 kV. After the capacitor was discharged, a pulse current with a peak value greater than 12 kA was generated in an EEOS. Finally, a high-voltage fast pulse with a voltage peak value greater than 180 kV, a rise time of 3 ns, a pulse width of 30 ns and a current peak of 3.4 kA was obtained on an X-ray diode load.
-
表 1 不同参数时电感中的电流和EDFEG主要设计参数
Table 1. Simulation results of the current through the inductance and design parameters of the EDFEG
I0/kA IL/kA U0/kV m×n Ashock/cm2 IL/kA U0/kV m×n Ashock/cm2 IL/kA U0/kV m×n Ashock/cm2 L=0.2 μH L=1.0 μH L=2.0 μH 5.0 7.9 5.8 114×1 70 8.3 21.6 114×3 210 8.9 45.8 114×7 490 7.5 11.8 9.7 170×2 204 13.1 28.2 170×4 408 13.4 63.2 170×9 918 15 23.5 17.4 340×3 612 26.2 54.3 340×8 1632 26.5 120.6 340×25 4335 表 2 不同去极化电流和电感条件下优化的金属丝参数及负载电压与脉宽的仿真结果
Table 2. Optimized parameters of EEOS and simulation results of the voltage and pulse width
I0/kA N l/mm Ud/kV τ/ns N l/mm Ud/kV τ/ns N l/mm Ud/kV τ/ns L=0.2 μH L=1.0 μH L=2.0 μH 5.0 3 20 58 17 5 60 109 37 5 90 150 60 7.5 5 30 74 15 7 90 160 38 9 130 213 61 15.0 9 50 140 16 14 160 320 36 15 280 434 62 表 3 EDFEG电压源模式不同条件的计算结果
Table 3. Simulation results with EDFEG in high-voltage mode
C/nF Uc/kV N l/mm Ud/kV τ/ns N l/mm Ud/kV τ/ns N l/mm Ud/kV τ/ns L=0.3 μH L=0.4 μH L=1.0 μH 15.1 100 4 90 256 19 4 90 238 22 4 100 182 62 18.7 90 5 90 245 19 4 90 224 24 4 100 176 64 22.7 85 5 90 239 20 5 90 220 26 4 100 172 67 表 4 脉冲电容器75 kV/17.5 nF工作参数条件下模拟计算结果
Table 4. Simulation results with parameters 75 kV/17.5 nF of the capacitor
l/mm Ud/kV τ/ns l/mm Ud/kV τ/ns l/mm Ud/kV τ/ns L=300 nH,N=4 L=400 nH,N=4 L=1000 nH,N=3 80 206 20 80 190 25 90 144 56 表 5 脉冲电容器75 kV/17.5 nF工作参数条件下计算结果与试验结果
Table 5. Simulation results and experimental results with parameters 75 kV/17.5 nF of the capacitor
item Ud/kV tr/ ns τ/ns Ud/kV tr/ ns τ/ns Ud/kV tr/ ns τ/ns L=298 nH,N=4 L=397 nH,N=4 L=445 nH,N=4 simulation
results193 3.5 19 174 3.7 24 163 4.2 27 experiment results 167 3.6 25 157 3.5 32 147 3.3 39 -
[1] Tkach Y, Shkuratov S I, Dickens J, et al. Explosive driven ferroelectric generators[C]//Proceedings of the Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. Digest of Papers (Cat. No. 01CH37251). 2001: 986-989. [2] 刘高旻, 刘雨生, 张毅, 等. PZT铁电陶瓷及其在脉冲能源中的应用[J]. 材料导报, 2006, 20(6):74-77,81. (Liu Gaomin, Liu Yusheng, Zhang Yi, et al. PZT ferroelectric ceramic for shock-driven pulsed power supply[J]. Materials Review, 2006, 20(6): 74-77,81 doi: 10.3321/j.issn:1005-023X.2006.06.020Liu Gaomin, Liu Yusheng, Zhang Yi, et al. PZT ferroelectric ceramic for shock-driven pulsed power supply[J]. Materials Review, 2006, 20(6): 74-77, 81 doi: 10.3321/j.issn:1005-023X.2006.06.020 [3] 杜金梅, 张毅, 张福平, 等. 冲击加载下PZT 95/5铁电陶瓷的脉冲大电流输出特性[J]. 物理学报, 2006, 55(5):2584-2589. (Du Jinmei, Zhang Yi, Zhang Fuping, et al. Large current out-put of PZT 95/5 ferroelectric ceramics under shock loading[J]. Acta Physica Sinica, 2006, 55(5): 2584-2589 doi: 10.3321/j.issn:1000-3290.2006.05.081Du Jinmei, Zhang Yi, Zhang Fuping, et al. Large current out-put of PZT 95/5 ferroelectric ceramics under shock loading[J]. Acta Physica Sinica, 2006, 55(5): 2584-2589 doi: 10.3321/j.issn:1000-3290.2006.05.081 [4] Shkuratov S I, Baird J, Talantsev E F, et al. Note: miniature 120-kV autonomous generator based on transverse shock-wave depolarization of Pb(Zr0.52Ti0.48)O3 ferroelectrics[J]. Review of Scientific Instruments, 2011, 82: 086107. doi: 10.1063/1.3625276 [5] Altgilbers L L. Recent advances in the development of ferroelectric generators[C]//Proceedings of the 19th IEEE Pulsed Power Conference. 2013. [6] Schoeneberg N, Walter J, Neuber A, et al. Ferromagnetic and ferroelectric materials as seed sources for magnetic flux compressors[C]//Proceedings of the 14th IEEE International Pulsed Power Conference. 2003: 1069-1072. [7] Shkuratov S I, Talantsev E F, Baird J, et al. Completely explosive ultracompact high-voltage nanosecond pulse-generating system[J]. Review of Scientific Instruments, 2006, 77: 043904. doi: 10.1063/1.2168674 [8] 高顺受, 杨礼兵, 陈英石, 等. 电感储能脉冲功率调节系统的研究[J]. 爆炸与冲击, 1997, 17(1):50-56. (Gao Shunshou, Yang Libing, Chen Yingshi, et al. An inductive energy pulsed power conditioning system[J]. Explosion and Shock Waves, 1997, 17(1): 50-56Gao Shunshou, Yang Libing, Chen Yingshi, et al. An inductive energy pulsed power conditioning system[J]. Explosion and Shock Waves, 1997, 17(1): 50-56 [9] 王延, 张东东, 付荣耀, 等. 电感储能型大电流毫秒级脉冲源研制[J]. 电工技术学报, 2020, 35(23):5025-5030. (Wang Yan, Zhang Dongdong, Fu Rongyao, et al. Design of a high current inductive pulsed power supply with millisecond pulse width[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 5025-5030Wang Yan, Zhang Dongdong, Fu Rongyao, et al. Design of a high current Inductive pulsed power supply with millisecond pulse width[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 5025-5030 [10] Chernyshev V K, Kucherov A I, Mezhevov A B, et al. Electroexplosive foil 500 kV current opening switch characteristics research[C]//Proceedings of the 11th IEEE International Pulsed Power Conference. 1997: 1208-1212. [11] Novac B M, Smith I R, Gregory K. High-power, high-voltage generator with a multi-pulse twin output[C]//Proceedings of the IEEE Conference Record - Abstracts. PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. 2001. [12] 杨礼兵, 高顺受. 高电压脉冲功率调节系统的数值模拟[J]. 强激光与粒子束, 1996, 8(3):400-406. (Yang Libing, Gao Shunshou. Numerical simulation of high voltage pulsed power conditioning systems[J]. High Power Laser and Particle Beams, 1996, 8(3): 400-406Yang Libing, Gao Shunshou. Numerical simulation of high voltage pulsed power conditioning systems[J]. High Power Laser and Particle Beams, 1996, 8(3): 400-406 [13] 郝世荣, 刘伟, 王敏华, 等. 电爆炸箔断路开关的理论和实验研究[J]. 强激光与粒子束, 2004, 16(8):1071-1074. (Hao Shirong, Liu Wei, Wang Minhua, et al. Theoretic and experimental study of exploding foil opening switch[J]. High Power Laser and Particle Beams, 2004, 16(8): 1071-1074Hao Shirong, Liu Wei, Wang Minhua, et al. Theoretic and experimental study of exploding foil opening switch[J]. High Power Laser and Particle Beams, 2004, 16(8): 1071-1074 [14] 郝世荣, 谢卫平, 丁伯南, 等. 一种基于电爆炸丝断路开关的多脉冲产生技术[J]. 强激光与粒子束, 2006, 18(8):1401-1404. (Hao Shirong, Xie Weiping, Ding Bonan, et al. Multi-pulse generation technique based on electro-explosive opening switch[J]. High Power Laser and Particle Beams, 2006, 18(8): 1401-1404Hao Shirong, Xie Weiping, Ding Bonan, et al. Multi-pulse generation technique based on electro-explosive opening switch[J]. High Power Laser and Particle Beams, 2006, 18(8): 1401-1404 [15] 伍友成, 刘高旻, 戴文峰, 等. 冲击波作用Pb(Zr0.95Ti0.05)O3铁电陶瓷去极化后电阻率动态特性[J]. 物理学报, 2017, 66:047201. (Wu Youcheng, Liu Gaomin, Dai Wenfeng, et al. Dynamic resistivity of Pb(Zr0.95Ti0.05)O3 depolarized ferroelectric under shock wave compression[J]. Acta Physica Sinica, 2017, 66: 047201 doi: 10.7498/aps.66.047201Wu Youcheng, Liu Gaomin, Dai Wenfeng, et al. Dynamic resistivity of Pb(Zr0.95Ti0.05)O3 depolarized ferroelectric under shock wave compression[J]. Acta Physica Sinica, 2017, 66: 047201 doi: 10.7498/aps.66.047201 [16] 伍友成, 刘高旻, 戴文峰, 等. 铁电体电源中介质电阻特性及对输出电荷的影响[J]. 强激光与粒子束, 2018, 30:035007. (Wu Youcheng, Liu Gaomin, Dai Wenfeng, et al. Resistivity properties of ferroelectric ceramics and its effects on output charges in explosion-driven ferroelectric generator[J]. High Power Laser and Particle Beams, 2018, 30: 035007 doi: 10.11884/HPLPB201830.170400Wu Youcheng, Liu Gaomin, Dai Wenfeng, et al. Resistivity properties of ferroelectric ceramics and its effects on output charges in explosion-driven ferroelectric generator[J]. High Power Laser and Particle Beams, 2018, 30: 035007 doi: 10.11884/HPLPB201830.170400 [17] Wu Youcheng, Liu Gaomin, Gao Zhipeng, et al. Dynamic dielectric properties of the ferroelectric ceramic Pb(Zr0.95Ti0.05)O3 in shock compression under high electrical field[J]. Journal of Applied Physics, 2018, 123: 244102. doi: 10.1063/1.5030017 [18] 韩若愚, 邓成志, 冯娟, 等. 铜镍合金丝电爆炸放电特性与时空演化行为[J]. 强激光与粒子束, 2021, 33:065010. (Han Ruoyu, Deng Chengzhi, Feng Juan, et al. Discharge characteristics and spatial-temporal evolution of Cu-Ni alloy wire explosion[J]. High Power Laser and Particle Beams, 2021, 33: 065010Han Ruoyu, Deng Chengzhi, Feng Juan, et al. Discharge characteristics and spatial-temporal evolution of Cu-Ni alloy wire explosion[J]. High Power Laser and Particle Beams, 2021, 33: 065010