留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微秒长脉冲有磁场高功率微波二极管真空界面设计

杨汉武 荀涛 高景明 张自成

杨汉武, 荀涛, 高景明, 等. 微秒长脉冲有磁场高功率微波二极管真空界面设计[J]. 强激光与粒子束, 2022, 34: 095002. doi: 10.11884/HPLPB202234.210472
引用本文: 杨汉武, 荀涛, 高景明, 等. 微秒长脉冲有磁场高功率微波二极管真空界面设计[J]. 强激光与粒子束, 2022, 34: 095002. doi: 10.11884/HPLPB202234.210472
Yang Hanwu, Xun Tao, Gao Jingming, et al. Design of a vacuum interface of a microsecond timescale HPM diode with guiding magnetic field[J]. High Power Laser and Particle Beams, 2022, 34: 095002. doi: 10.11884/HPLPB202234.210472
Citation: Yang Hanwu, Xun Tao, Gao Jingming, et al. Design of a vacuum interface of a microsecond timescale HPM diode with guiding magnetic field[J]. High Power Laser and Particle Beams, 2022, 34: 095002. doi: 10.11884/HPLPB202234.210472

微秒长脉冲有磁场高功率微波二极管真空界面设计

doi: 10.11884/HPLPB202234.210472
详细信息
    作者简介:

    杨汉武,yanghw@nudt.edu.cn

  • 中图分类号: TN787

Design of a vacuum interface of a microsecond timescale HPM diode with guiding magnetic field

  • 摘要: 介绍了一种微秒长脉冲有磁场的真空二极管界面的设计和实验结果。采取了三种措施来抑制沿面闪络:一是阴极电子束挡板,用来拦截来自阴极和电子束漂移管的回流电子束;二是接地屏蔽板,使电场等势线和界面成约45°角,使阴极三结合点处发射的电子远离绝缘板;三是降低阴极三结合点处的场强,并使用一悬浮电位的金属环阻止电子倍增过程。计算了二极管内电场、磁场分布和电子束的运动轨迹并据此优化了真空界面的结构,实验验证了该二极管真空界面可以在400 kV、800 ns条件下正常工作,可以支持长脉冲高功率微波器件的研究。
  • 图  1  最初设计的的真空二极管结构和实验结果

    Figure  1.  Original design of the vacuum interface and experimental result

    图  2  改进设计的真空二极管结构

    Figure  2.  Improved design of the vacuum interface structure

    图  3  二极管和真空界面附近的磁场线分布

    Figure  3.  Magnetic field lines near the vacuum interface and the diode

    图  4  阴极区域电子束轨迹

    Figure  4.  Electron trajectories at the cathode region

    图  5  二极管负载实验电压和电流波形

    Figure  5.  Current and voltage waveform of the diode load

    图  6  不同导引磁场强度下阴极杆发射时的电子轨迹

    Figure  6.  Electron trajectories starting from cathode shaft at different magnetic field strength

  • [1] Zhang Jiande, Ge Xingjun, Zhang Jun, et al. Research progresses on Cherenkov and transit-time high-power microwave sources at NUDT[J]. Matter and Radiation at Extremes, 2016, 1(3): 163-178. doi: 10.1016/j.mre.2016.04.001
    [2] 杨汉武, 高景明, 张自成, 等. 基于MOV的800纳秒吉瓦级脉冲驱动源[C]//第七届全国脉冲功率会议. 重庆, 2021

    Yang Hanwu, Gao Jingming, Zhang Zicheng, et al. Test of an 800 ns gigawatt pulse generator based on metal-oxide varistors[C]//Proceedings of the 7th China Pulsed Power Conference. Chongqing, 2021
    [3] Wang Hongguang, Zhang Jianwei, Li Yongdong, et al. 2D particle-in-cell simulation of the entire process of surface flashover on insulator in vacuum[J]. Physics of Plasmas, 2018, 25: 043522. doi: 10.1063/1.5021177
    [4] Xun Tao, Yang Hanwu, Zhang Jiande. A high-vacuum high-electric-field pulsed power interface based on a ceramic insulator[J]. IEEE Transactions on Plasma Science, 2015, 43(12): 4130-4135. doi: 10.1109/TPS.2015.2497276
    [5] Miller H C. Flashover of insulators in vacuum: the last twenty years[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(6): 3641-3657. doi: 10.1109/TDEI.2015.004702
    [6] Miller H C. Flashover of insulators in vacuum: review of the phenomena and techniques to improved holdoff voltage[J]. IEEE Transactions on Electrical Insulation, 1993, 28(4): 512-527. doi: 10.1109/14.231534
    [7] Krasik Y E, Leopold J G. Initiation of vacuum insulator surface high-voltage flashover with electrons produced by laser illumination[J]. Physics of Plasmas, 2015, 22: 083109. doi: 10.1063/1.4928580
    [8] Harris J R. A tutorial on vacuum surface flashover[J]. IEEE Transactions on Plasma Science, 2018, 46(6): 1872-1880. doi: 10.1109/TPS.2017.2759248
    [9] Harris J R, Caporaso G J, Blackfield D, et al. Displacement current and surface flashover[J]. Applied Physics Letters, 2007, 91: 121504. doi: 10.1063/1.2785116
    [10] Gleizer J Z, Krasik Y E, Dai U, et al. Vacuum surface flashover: experiments and simulations[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(5): 2394-2404. doi: 10.1109/TDEI.2014.004628
    [11] Smith I D. Flashover of vacuum interfaces with many stages and large transit times[J]. IEEE Transactions on Plasma Science, 1997, 25(2): 293-299. doi: 10.1109/27.602502
    [12] Sun Xiaoliang, Xun Tao, Zhong Huihuang, et al. Characterization of flashover plasma across a large-scale ceramic vacuum interface initiated by explosive electron emission[J]. AIP Advances, 2018, 8: 075309. doi: 10.1063/1.5039434
    [13] 刘瑜, 邓建军, 王勐, 等. 外加磁场下真空沿面闪络特性数值模拟[J]. 强激光与粒子束, 2010, 22(10):2501-2504. (Liu Yu, Deng Jianjun, Wang Meng, et al. Numerical simulation of vacuum surface flashover under applied magnetic field[J]. High Power Laser and Particle Beams, 2010, 22(10): 2501-2504 doi: 10.3788/HPLPB20102210.2501

    Liu Yu, Deng Jianjun, Wang Meng, et al. Numerical simulation of vacuum surface flashover under applied magnetic field[J]. High Power Laser and Particle Beams, 2010, 22(10): 2501-2504 doi: 10.3788/HPLPB20102210.2501
    [14] Savage M E, Stoltzfus B S, Austin K N, et al. Performance of a radial vacuum insulator stack[C]//Proceedings of 2015 IEEE Pulsed Power Conference. 2015: 1-6.
    [15] Mesyats G A, Korovin S D, Gunin A V, et al. Repetitively pulsed high-current accelerators with transformer charging of forming lines[J]. Laser and Particle Beams, 2003, 21(2): 197-209. doi: 10.1017/S0263034603212076
  • 加载中
图(6)
计量
  • 文章访问数:  641
  • HTML全文浏览量:  203
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-08
  • 修回日期:  2022-01-25
  • 录用日期:  2022-02-18
  • 网络出版日期:  2022-02-26
  • 刊出日期:  2022-06-17

目录

    /

    返回文章
    返回