留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢原子束在大气长程传输中自剥离效应研究

沈硕 郝建红 张芳 赵强 范杰清 董志伟

沈硕, 郝建红, 张芳, 等. 氢原子束在大气长程传输中自剥离效应研究[J]. 强激光与粒子束, 2022, 34: 064004. doi: 10.11884/HPLPB202234.210481
引用本文: 沈硕, 郝建红, 张芳, 等. 氢原子束在大气长程传输中自剥离效应研究[J]. 强激光与粒子束, 2022, 34: 064004. doi: 10.11884/HPLPB202234.210481
Shen Shuo, Hao Jianhong, Zhang Fang, et al. Study on beam-induced-stripping effect of hydrogen atom beam in long distance propagation in atmosphere[J]. High Power Laser and Particle Beams, 2022, 34: 064004. doi: 10.11884/HPLPB202234.210481
Citation: Shen Shuo, Hao Jianhong, Zhang Fang, et al. Study on beam-induced-stripping effect of hydrogen atom beam in long distance propagation in atmosphere[J]. High Power Laser and Particle Beams, 2022, 34: 064004. doi: 10.11884/HPLPB202234.210481

氢原子束在大气长程传输中自剥离效应研究

doi: 10.11884/HPLPB202234.210481
基金项目: 高功率微波技术重点实验室基金项目(6142605200301); 国家自然科学基金委员会与中国工程物理研究院联合基金项目(U1730247)
详细信息
    作者简介:

    沈 硕,530802944@qq.com

    通讯作者:

    张 芳,zhang_fang@iapcm.ac.cn

  • 中图分类号: O46

Study on beam-induced-stripping effect of hydrogen atom beam in long distance propagation in atmosphere

  • 摘要: 氢原子束在大气传输时,束流粒子与大气粒子碰撞电离形成的大气剥离效应,以及和大气剥离产生次级粒子碰撞电离形成的自剥离效应,是造成氢原子束能量损失的重要机制。考虑到自剥离效应成因复杂,虽然目前已有一些理论方面的研究结果,但对其发生机理和对束流损失效果尚未有实验或数值模拟方面的工作,因此,通过对自剥离效应的发生机理和对束流损失的影响进行分析,进一步完善了自剥离效应理论,在通过束流传输方程验证了粒子云网格-蒙特卡罗法对氢原子束大气传输仿真模拟适用的基础上,将仿真结果与自剥离理论进行了对比,验证了自剥离效应理论的适用性。模拟结果表明,自剥离效应是由束流被大气电离产生的带电次级粒子团在地磁场的影响不停地穿越束流导致的,且自剥离效应的强弱与原子束的密度有关,束流密度越大,自剥离效应越强,对束流的影响越大。
  • 图  1  在不考虑自剥离时PIC-MCC模拟结果与束流传输方程对比

    Figure  1.  Comparison between PIC-MCC simulation results and beam propagation equation without considering self-stripping

    图  2  考虑自剥离时PIC-MCC模拟结果与束流传输方程对比

    Figure  2.  Comparison between PIC-MCC simulation results and beam propagation equation with considering self-stripping

    图  3  氢原子束大气传输模型示意

    Figure  3.  Schematic diagram of atmospheric transport model of hydrogen atom beam

    图  4  氢原子束极化电场

    Figure  4.  Polarization electric field of hydrogen atom beam

    图  5  密度为1.0×1018 m−3氢原子束大气传输时部分粒子的位置分布

    Figure  5.  Beam-induced stripping (BIS) products of hydrogen atomic beam (H-beam density 1.0×1018 m−3) propagating in atmosphere under the influence of geomagnetic field

    图  6  密度为1.0×1017 m−3氢原子束大气传输时部分粒子的位置分布

    Figure  6.  BIS products of hydrogen atomic beam (H-beam density 1.0×1017 m−3) propagating in atmosphere under the influence of geomagnetic field

    图  7  电子自剥离产生的次级粒子与氢离子自剥离产生的次级粒子的数量比

    Figure  7.  The ratio of the number of secondary particles produced by electron self-stripping to that produced by hydrogen ion self-stripping

    图  8  不同种类次级粒子自剥离效果对比

    Figure  8.  Comparison of BIS effect of different kinds of secondary particles

    图  9  不同初始束密度时束密度随传输距离的变化

    Figure  9.  Variation of beam density with transmission distance at different initial beam density

  • [1] Kessler D J, Cour-Palais B G. Collision frequency of artificial satellites: the creation of a debris belt[J]. Journal of Geophysical Research: Space Physics, 1978, 83(A6): 2637-2646. doi: 10.1029/JA083iA06p02637
    [2] ESA. Space debris by the numbers[EB/OL]. [2022-01-15]. https://www.esa.int/Safety_Security/Space_Debris/Space_debris_by_the_numbers.
    [3] Tarran B. Prepare for impact: space debris and statistics[J]. Significance, 2021, 18(3): 18-23. doi: 10.1111/1740-9713.01527
    [4] Levchenko I, Baranov O, Fang Jinghua, et al. Focusing plasma jets to achieve high current density: feasibility and opportunities for applications in debris removal and space exploration[J]. Aerospace Science and Technology, 2021, 108: 106343. doi: 10.1016/j.ast.2020.106343
    [5] Obukhov V A, Kirillov V A, Petukhov V G, et al. Problematic issues of spacecraft development for contactless removal of space debris by ion beam[J]. Acta Astronautica, 2021, 181: 569-578. doi: 10.1016/j.actaastro.2021.01.043
    [6] Li Bin, Sang Jizhang. Efficient and accurate error propagation in the semi-analytic orbit dynamics system for space debris[J]. Advances in Space Research, 2020, 65(1): 285-296. doi: 10.1016/j.asr.2019.09.016
    [7] Cordelli E, Vananti A, Schildknecht T. Analysis of laser ranges and angular measurements data fusion for space debris orbit determination[J]. Advances in Space Research, 2020, 65(1): 419-434. doi: 10.1016/j.asr.2019.11.009
    [8] Hossein S H, Acernese M, Cardona T, et al. Sapienza Space debris Observatory Network (SSON): a high coverage infrastructure for space debris monitoring[J]. Journal of Space Safety Engineering, 2020, 7(1): 30-37. doi: 10.1016/j.jsse.2019.11.001
    [9] Li T, Kalman G, Pulsifer P. Neutral beam propagation effects in the upper atmosphere[R]. AFGL-TR-86-0192, 1986: 3-1.
    [10] Kalman G J, Li T. Neutral beam propagation through the atmosphere[R]. AFGL-TR-87-0267, 1987: 7-15.
    [11] Okuda H, Hiroe S. Neutral beam injection and plasma convection in a magnetic field[J]. The Physics of Fluids, 1988, 31(11): 3312-3321. doi: 10.1063/1.866945
    [12] Price J C. Kinetic theory of plasma in a magnetic field[J]. The Physics of Fluids, 1971, 14(6): 1152-1157. doi: 10.1063/1.1693579
    [13] Wessel F, Robertson S. Polarization of an intense space-charge-neutral ion beam incident upon a magnetic field[J]. The Physics of Fluids, 1981, 24(4): 739-745. doi: 10.1063/1.863438
    [14] Ishizuka H, Robertson S. Propagation of an intense charge-neutralized ion beam transverse to a magnetic field[J]. The Physics of Fluids, 1982, 25(12): 2353-2358. doi: 10.1063/1.863719
    [15] Robertson S. Magnetic guiding, focusing and compression of an intense charge-neutral ion beam[J]. The Physics of Fluids, 1983, 26(4): 1129-1138. doi: 10.1063/1.864224
    [16] 沈硕, 张芳, 郝建红, 等. 氢原子束在大气长程传输中的剥离效应[J]. 强激光与粒子束, 2020, 32:104002. (Shen Shuo, Zhang Fang, Hao Jianhong, et al. Stripping effect of hydrogen atom beam in long-range atmospheric propagation[J]. High Power Laser and Particle Beams, 2020, 32: 104002 doi: 10.11884/HPLPB202032.200053
  • 加载中
图(9)
计量
  • 文章访问数:  690
  • HTML全文浏览量:  318
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-04
  • 修回日期:  2022-02-26
  • 网络出版日期:  2022-03-11
  • 刊出日期:  2022-06-15

目录

    /

    返回文章
    返回