Design and experiment of Hopkinson bar electromagnetic loading system
-
摘要: 设计一种电磁加载系统应用于分离式霍普金森杆实验装置,能够克服传统气压驱动的缺点,达到精确控制入射应力波的目的。通过对电磁加载技术的调研,了解不同加载方式的电压等级,确定低压加载方式;构建系统等效RLC回路,推导回路参数与入射应力波的函数关系。结合理论计算,利用有限元软件进行耦合场仿真,仿真发现放电线圈匝数对入射应力波的幅频特性影响较大,同时为了保证电磁能量的利用效率,需要保证感应线圈的厚度大于磁渗透深度,最后根据实验要求确定电磁加载系统各参数。按照加载系统参数搭建实验平台,进行霍普金森杆冲击实验,通过对入射应力波的测量,验证了理论计算及软件仿真的正确性。Abstract: An electromagnetic loading system is designed to be applied to a separate Hopkinson rod experimental device. It can overcome the shortcomings of traditional pneumatic drive and achieve the purpose of accurately controlling the incident stress. The low-voltage loading method is determined through the investigation of electromagnetic loading technology, then the system equivalent RLC loop is constructed, and the functional relationship between the loop parameters and the incident stress wave is derived. Combining theoretical calculation results, using finite element software for coupling field simulation, the simulation shows that the number of turns of the active coil has a great impact on the pulse width and amplitude of the incident stress. At the same time, to ensure the utilization efficiency of electromagnetic energy, it is necessary to ensure that the thickness of the inductive coil is greater than the depth of magnetic penetration, and determine the parameters of the electromagnetic loading system according to the experimental requirements. An experimental platform was built to carry out the Hopkinson bar impact experiment, and the correctness of the theoretical calculation and software simulation was verified through the measurement of the incident stress.
-
表 1 应力波上升时间及幅值
Table 1. Rise time and amplitude of stress
Uc/V incident stress amplitude/MPa rise time/μs 200 12.89 150 400 51.84 150 600 116.85 150 800 207.92 150 1000 325.04 150 表 2 仿真结果
Table 2. Results of simulation
thickness/mm incident stress amplitude/MPa rise time/μs 1 108.36 139 2 116.91 150 3 117.63 150 4 117.62 150 5 112.73 153 -
[1] 卢芳云, 陈荣, 林玉亮, 等. 霍普金森杆实验技术[M]. 北京: 科学出版社, 2013Lu Fangyun, Chen Rong, Lin Yuliang, et al. Hopkinson bar techniques[M]. Beijing: Science Press, 2013 [2] Chen Weinong, Song Bo. Split Hopkinson (Kolsky) bar: design, testing and applications[M]. New York: Springer, 2011. [3] 李玉龙, 聂海亮, 汤忠斌, 等. 一种分离式霍普金森压杆实验装置: CN203894129U[P]. 2014-10-22Li Yulong, Nie Hailiang, Tang Zhongbin, et al. Split Hopkinson pressure bar experimental device: CN203894129U[P]. 2014-10-22 [4] Nie Hailiang, Suo Tao, Wu Beibei, et al. A versatile split Hopkinson pressure bar using electromagnetic loading[J]. International Journal of Impact Engineering, 2018, 116: 94-104. [5] 曹增强, 左杨杰. 电磁铆接[M]. 北京: 国防工业出版社, 2018Cao Zengqiang, Zuo Yangjie. Electromagnetic riveting[M]. Beijing: National Defense Industry Press, 2018 [6] 张俊峰. 低压电磁铆接技术研究[D]. 西安: 西北工业大学, 2001Zhang Junfeng. Research on low voltage electromagnetic riveting technology[D]. Xi’an: Northwestern Polytechnical University, 2001 [7] 邓将华, 李春峰. 电磁铆接技术研究概况及发展趋势[J]. 锻压技术, 2006, 31(5):10-14. (Deng Jianghua, Li Chunfeng. Current status and trends in researches on electromagnetic riveting[J]. Forging & Stamping Technology, 2006, 31(5): 10-14 doi: 10.3969/j.issn.1000-3940.2006.05.003Deng Jianghua, Li Chunfeng. Current status and trends in researches on electromagnetic riveting[J]. Forging & Stamping Technology, 2006, 31(5): 10-14 doi: 10.3969/j.issn.1000-3940.2006.05.003 [8] 邓将华, 郑义明, 唐超, 等. 低压电磁铆接放电电流分析[J]. 塑性工程学报, 2013, 20(1):108-112. (Deng Jianghua, Zheng Yiming, Tang Chao, et al. Analysis of discharge current in low voltage electromagnetic riveting[J]. Journal of Plasticity Engineering, 2013, 20(1): 108-112 doi: 10.3969/j.issn.1007-2012.2013.01.022Deng Jianghua, Zheng Yiming, Tang Chao, et al. Analysis of discharge current in low voltage electromagnetic riveting[J]. Journal of Plasticity Engineering, 2013, 20(1): 108-112 doi: 10.3969/j.issn.1007-2012.2013.01.022 [9] 陈永真, 李锦. 电容器手册[M]. 北京: 科学出版社, 2008Chen Yongzhen, Li Jin. Capacitor handbook[M]. Beijing: Science Presss, 2008 [10] Huang Wenkai, Chen Guangxin, Hu Mingbin, et al. A miniature multi-pulse series loading Hopkinson bar experimental device based on an electromagnetic launch[J]. Review of Scientific Instruments, 2019, 90: 025110. [11] Xie Beixin, Xu Peidong, Tang Liqun, et al. Dynamic mechanical properties of polyvinyl alcohol hydrogels measured by double-striker electromagnetic driving SHPB system[J]. International Journal of Applied Mechanics, 2019, 11: 1950018. [12] Guo Yazhou, Du Bing, Liu Huifang, et al. Electromagnetic Hopkinson bar: a powerful scientific instrument to study mechanical behavior of materials at high strain rates[J]. Review of Scientific Instruments, 2020, 91: 081501. [13] 王泽忠, 全玉生, 卢斌先. 工程电磁场[M]. 北京: 清华大学出版社, 2004Wang Zezhong, Quan Yusheng, Lu Binxian. Engineering electromagnetic field[M]. Beijing: Tsinghua University Press, 2004 [14] 卡兰塔罗夫, 采依特林. 电感计算手册[M]. 陈汤铭, 刘保安, 罗应立, 等译. 北京: 机械工业出版社, 1992Калантаров П Л, Цейтлин Л А. Inductance calculation manual[M]. Chen Tangming, Liu Baoan, Luo Yingli, et al, trans. Beijing: China Machine Press, 1992