Safety boundary of flow channel partial blockage in plate-type fuel assembly
-
摘要: 为掌握板状燃料组件内多个流道堵塞下的流动换热特性,获得流动堵塞致传热恶化的触发边界,以提高板状燃料反应堆的运行安全性,以典型板状燃料堆JRR-3M的标准燃料组件为对象,基于定性分析将流道堵塞事故分为非相邻流道堵塞与相邻流道堵塞两类,采用计算流体动力学软件ANSYS Fluent对两类流道堵塞事故下的流动换热特性进行模拟。模拟结果表明:非相邻流道完全堵塞或相邻流道最大堵塞率低于35%,流道内不会发生局部沸腾且燃料最高温度低于许用温度。基于上述结果,可确定JRR-3M反应堆在堵流事故下的安全运行边界。Abstract: It is necessary to obtain the triggering boundaries of heat transfer deterioration by mastering the flow and heat transfer characteristics in plate-type fuel assembly with multiple channels blocked, to improve the operation safety of plate-type fuel reactors. Based on qualitative analysis, the flow channel partial blockage accidents can be divided into non-adjacent channel blockage accident and adjacent channel blockage accident for the standard fuel assembly of the typical plate-type fuel reactor JRR-3M. Furthermore, the simulations of the flow and heat transfer characteristics under the two types of accidents were carried out using the computational fluid dynamics software ANSYS Fluent. The simulation results show that local boiling will not occur in flow channels and the maximum fuel temperature will be lower than the allowable temperature when non-adjacent channels are completely blocked or the maximum blocking rate of adjacent channels is less than 35%. Therefore, the safety operation boundary of JRR-3M reactor under flow channel blockage accident can be determined.
-
material density/(kg·m−3) specific heat/ (J·kg−1·K−1) thermal conductivity/(W·m−1·K−1) 6061Al 2700 896 170 U3Si2-Al 6000 406.7 32 表 2 不同网格量下的平均组件计算结果
Table 2. Average assembly calculation results under different grid sizes
number of grids pressure drop/kPa mean convective heat transfer coefficient / (W·m−2·K−1) maximum fuel temperature /K 104466 57.99 33196.41 339.65 200500 57.52 33197.97 339.44 453855 57.33 33120.20 339.92 表 3 不同堵塞率及堵塞位置的分析结果
Table 3. Analysis results of different blockage rates and positions
No. blockage rate/% plug position Tfluid,max/K Tfuel,max/K Vch/(m·s−1) Tout/K 1 30 middle 337.82 365.61 5.29 329.12 2 35 middle 340.07 368.32 5.07 329.88 3 40 middle 343.56 371.82 4.89 330.68 4 45 middle 345.68 375.51 4.66 331.76 5 50 middle 358.15 390.59 4.39 333.14 6 55 middle 368.59 397.68 4.10 335.04 7 60 middle 383.58 413.68 3.75 337.67 8 30 side 345.35 402.03 5.44 328.44 9 35 side 369.32 415.48 5.29 329.13 10 40 side 387.61 436.60 5.08 330.02 -
[1] 宋磊, 郭赟, 曾和义. 板状燃料组件入口堵流事故下流场和温度场的瞬态数值计算[J]. 核动力工程, 2014, 35(3):6-10. (Song Lei, Guo Yun, Zeng Heyi. Numerical analysis on transient flow and temperature field during inlet flow blockage accidents of plate-type fuel assembly[J]. Nuclear Power Engineering, 2014, 35(3): 6-10 [2] Keller F R. Fuel element flow blockage in the engineering test reactor[R]. IDO-16780, 1962. [3] Sims T M, Tabor W H. Report on fuel-plate melting at the Oak Ridge Research Reactor[R]. ORNL-TM-627, 1964. [4] Adorni M, Bousbia-Salah A, Hamidouche T, et al. Analysis of partial and total flow blockage of a single fuel assembly of an MTR research reactor core[J]. Annals of Nuclear Energy, 2005, 32(15): 1679-1692. doi: 10.1016/j.anucene.2005.06.001 [5] 李金才, 王平. COBRA-IIIC/MIT-2程序的改进及其在高通量研究堆中的应用[J]. 核科学与工程, 1996, 16(1):35-41. (Li Jincai, Wang Ping. The improvement of COBRA ⅢC/MIT-2 and its application to research reactor[J]. Chinese Journal of Nuclear Science and Engineering, 1996, 16(1): 35-41 [6] Guo Yuchuan, Wang Guanbo, Qian Dazhi, et al. Thermal hydraulic analysis of loss of flow accident in the JRR-3M research reactor under the flow blockage transient[J]. Annals of Nuclear Energy, 2018, 118: 147-153. doi: 10.1016/j.anucene.2018.04.014 [7] Guo Yuchuan, Wang Guanbo, Qian Dazhi, et al. Transient thermal-hydraulic analysis of single flow channel blockage in the JRR-3M 20-MW research reactor[J]. Nuclear Technology, 2018, 204(1): 15-24. doi: 10.1080/00295450.2018.1469345 [8] 郭玉川. 板状燃料元件堆流道堵塞事故分析[D]. 绵阳: 中国工程物理研究院, 2019: 37-42Guo Yuchuan. Analysis of plate fuel element reactor channel blockage accident[D]. Mianyang: China Academy of Engineering Physics, 2019: 37-42 [9] 宋磊. 板状燃料组件堵流事故数值分析[D]. 哈尔滨: 哈尔滨工程大学, 2013: 8-12Song Lei. Numerical analysis of the flow blockage accidents in plate-type fuel assembly[D]. Harbin: Harbin Engineering University, 2013: 8-12 [10] Salama A, El-Morshed S E D. CFD simulation of flow blockage through a coolant channel of a typical material testing reactor core[J]. Annals of Nuclear Energy, 2012, 41: 26-39. doi: 10.1016/j.anucene.2011.09.005 [11] Salama A. CFD investigation of flow inversion in typical MTR research reactor undergoing thermal–hydraulic transients[J]. Annals of Nuclear Energy, 2011, 38(7): 1578-1592. doi: 10.1016/j.anucene.2011.03.005 [12] Salama A, El-Morshedy S E D. CFD analysis of flow blockage in MTR coolant channel under loss-of-flow transient: hot channel scenario[J]. Progress in Nuclear Energy, 2012, 55: 78-92. doi: 10.1016/j.pnucene.2011.11.005 [13] Albati M A, Al-Yahia O S, Park J, et al. Thermal hydraulic analyses of JRR-3: Code-to-code comparison of COOLOD-N2 and TMAP[J]. Progress in Nuclear Energy, 2014, 71: 1-8. doi: 10.1016/j.pnucene.2013.10.015 [14] 韩华. 弥散型燃料元件的热稳定性实验研究[D]. 北京: 中国原子能科学研究院, 2003: 13Han Hua. Experimental study on thermal stability of diffuse fuel element[D]. Beijing: China Institute of Atomic Energy, 2003: 13 [15] 孙荣先. U3Si2-Al弥散型燃料元件[J]. 核动力工程, 1990, 11(2):69-74. (Sun Rongxian. U3Si2-Al dispersion fuel element[J]. Nuclear Power Engineering, 1990, 11(2): 69-74