留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁场调控型离子源的设计与实验

李杰 董攀 王韬 刘尔祥 刘飞翔 何佳龙 龙继东 章林文

李杰, 董攀, 王韬, 等. 磁场调控型离子源的设计与实验[J]. 强激光与粒子束, 2022, 34: 074001. doi: 10.11884/HPLPB202234.210515
引用本文: 李杰, 董攀, 王韬, 等. 磁场调控型离子源的设计与实验[J]. 强激光与粒子束, 2022, 34: 074001. doi: 10.11884/HPLPB202234.210515
Li Jie, Dong Pan, Wang Tao, et al. Design and experimental study of magnetic field regulating ion source[J]. High Power Laser and Particle Beams, 2022, 34: 074001. doi: 10.11884/HPLPB202234.210515
Citation: Li Jie, Dong Pan, Wang Tao, et al. Design and experimental study of magnetic field regulating ion source[J]. High Power Laser and Particle Beams, 2022, 34: 074001. doi: 10.11884/HPLPB202234.210515

磁场调控型离子源的设计与实验

doi: 10.11884/HPLPB202234.210515
基金项目: 国家自然科学基金项目 (11735012, 11905206,11975217)
详细信息
    作者简介:

    李 杰,nlijie@sina.com

    通讯作者:

    董 攀,panner95@163.com

  • 中图分类号: O461.2+2

Design and experimental study of magnetic field regulating ion source

  • 摘要: 磁场调控型离子源在离子源等离子体扩散空间中引入轴向强脉冲磁场,磁场起两方面的作用,一是形成潘宁放电效应,使原子、气体分子碰撞电离效率增加;二是在脉冲强磁场的作用下,强轴向磁场将质量较轻的离子约束在轴线上,对质量较重的金属离子约束能力较弱,导致其在等离子体膨胀引出通道中碰壁损失,能够提升引出轻离子的比例。开展了磁场调控的离子源放电结构、强脉冲螺线管磁场以及引出束流光学结构的设计;测量分析了引出离子流强和离子打靶束斑形貌。研究结果表明,强轴向磁场通过等离子体对混合离子成分的筛选作用,可有效提高引出离子流强中的轻离子成分比例。
  • 图  1  轻、重离子在螺线管轴向磁场中的运动轨迹

    Figure  1.  Trajectory of light and heavy ions in the axial magnetic field of solenoid

    图  2  磁场调控型离子源工作原理图

    Figure  2.  Principle diagram of magnetic field regulating ion source

    图  3  螺线管磁场分布情况

    图  4  磁场调控型离子源结构及仿真设计

    Figure  4.  Structure and simulation design of magnetic field regulating ion source

    图  5  离子流测量实验原理图

    Figure  5.  Experimental principle diagram for ion beam measurement

    图  6  弧流52 A时不同放电状态下束斑形貌

    Figure  6.  Beam profile of different discharge status at 52 A arc current

    图  7  不同弧流引出离子流打靶束斑情况

    Figure  7.  Beam profile of different arc current

    表  1  磁场调控型离子源引出离子流

    Table  1.   Extracting ion current of magnetic field regulating ion source

    extracting voltage/kVarc current/Atarget current/mAaccelerating electrode current/A
    110662800.1
    1101023101.0
    11015036010.0
    下载: 导出CSV
  • [1] Nikolaev A G, Oks E M, Savkin K P, et al. Upgraded vacuum arc ion source for metal ion implantation[J]. Review of Scientific Instruments, 2012, 83: 02A501. doi: 10.1063/1.3655529
    [2] MacGill R A, Dickinson M R, Brown I G. Vacuum arc ion sources-Micro to macro[J]. Review of Scientific Instruments, 1996, 67(3): 1210-1212. doi: 10.1063/1.1146734
    [3] Dougherty R C, Rochau G E, Bickes R W Jr, et al. Neutron generator for two-phase flow calibration: annual progress report[R]. SAND-78-2030, 1978.
    [4] Rochau G E, Hornsby D R, Mareda J F, et al. A pulsed neutron generator for mass flow measurement using the pulsed neutron activation technique[J]. IEEE Transactions on Nuclear Science, 1981, 28(2): 1658-1660. doi: 10.1109/TNS.1981.4331492
    [5] Shope L A, Berg R S, O'Neal M L, et al. Operation and life of the zetatron: a small neutron generator for borehole logging[J]. IEEE Transactions on Nuclear Science, 1981, 28(2): 1696-1699. doi: 10.1109/TNS.1981.4331501
    [6] 董攀, 李杰, 郑乐, 等. 真空弧放电TiH合金阴极表面形貌分析[J]. 强激光与粒子束, 2018, 30:014001. (Dong Pan, Li Jie, Zheng Le, et al. Surface morphology analysis of TiH cathode in vacuum arc discharge[J]. High Power Laser and Particle Beams, 2018, 30: 014001 doi: 10.11884/HPLPB201830.170356

    Dong Pan, Li Jie, Zheng Le, et al. Surface morphology analysis of TiH cathode in vacuum arc discharge[J]. High Power Laser and Particle Beams, 2018, 30: 014001 doi: 10.11884/HPLPB201830.170356
    [7] Ehlers K W, Gow J D, Ruby L, et al. Development of an occluded-gas ion source[J]. Review of Scientific Instruments, 1958, 29(7): 614-619. doi: 10.1063/1.1716272
    [8] Bitulev A A, Churin S V, Shchitov N N, et al. Increasing the efficiency of ion sources of vacuum neutron tubes[J]. Atomic Energy, 2015, 118(5): 354-359. doi: 10.1007/s10512-015-0007-5
    [9] Oks E M, Brown I G, Dickinson M R, et al. Elevated ion charge states in vacuum arc plasmas in a magnetic field[J]. Applied Physics Letters, 1995, 67(2): 200-202. doi: 10.1063/1.114666
    [10] Frolova V P, Nikolaev A G, Oks E M, et al. Deuterium ions in vacuum arc plasma with composite gas-saturated zirconium cathode in a magnetic field[J]. Plasma Sources Science and Technology, 2019, 28: 075015. doi: 10.1088/1361-6595/ab2b7f
    [11] Walko R J, Rochau G E. A high output neutron tube using an occluded gas ion source[J]. IEEE Transactions on Nuclear Science, 1981, 28(2): 1531-1534. doi: 10.1109/TNS.1981.4331459
    [12] Lan Chaohui, Long Jidong, Zheng Le, et al. Characteristics of resistance triggering of a pulsed vacuum arc ion source[J]. Chinese Physics Letter, 2015, 32: 095201. doi: 10.1088/0256-307X/32/9/095201
    [13] Yang Zhen, Long Jidong, Wang Xiaohu, et al. Ion beam profile diagnostic methods for vacuum arc ion source in sealed-tube neutron generator[J]. IEEE Transactions on Plasma Science, 2015, 43(6): 2070-2074. doi: 10.1109/TPS.2015.2421735
    [14] 杨振, 龙继东, 蓝朝晖, 等. 离子束流剖面分布离线诊断方法探索[J]. 强激光与粒子束, 2014, 26:044001. (Yang Zhen, Long Jidong, Lan Chaohui, et al. Exploratory research on off-line diagnosis method of ion beam profile[J]. High Power Laser and Particle Beams, 2014, 26: 044001 doi: 10.11884/HPLPB201426.044001

    Yang Zhen, Long Jidong, Lan Chaohui, et al. Exploratory research on off-line diagnosis method of ion beam profile[J]. High Power Laser and Particle Beams, 2014, 26: 044001 doi: 10.11884/HPLPB201426.044001
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  751
  • HTML全文浏览量:  318
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-24
  • 修回日期:  2022-03-27
  • 网络出版日期:  2022-04-09
  • 刊出日期:  2022-05-12

目录

    /

    返回文章
    返回