[1] |
Liu Yaping, Wang Ying, Huang Diangui. Supercritical CO2 Brayton cycle: a state-of-the-art review[J]. Energy, 2019, 189: 115900. doi: 10.1016/j.energy.2019.115900
|
[2] |
叶侠丰, 潘卫国, 尤运, 等. 超临界二氧化碳布雷顿循环在发电领域的应用[J]. 电力与能源, 2017, 38(3):343-347. (Ye Xiafeng, Pan Weiguo, You Yun, et al. Application of supercritical carbon dioxide Brayton cycle in power generation fields[J]. Power & Energy, 2017, 38(3): 343-347
|
[3] |
吴攀, 高春天, 单建强. 超临界二氧化碳布雷顿循环在核能领域的应用[J]. 现代应用物理, 2019, 10:031202. (Wu Pan, Gao Chuntian, Shan Jianqiang. Application of supercritical carbon dioxide Brayton cycle in nuclear engineering[J]. Modern Applied Physics, 2019, 10: 031202
|
[4] |
郑开云. 超临界二氧化碳布雷顿循环效率分析[J]. 发电设备, 2017, 31(5):305-309. (Zheng Kaiyun. Efficiency analysis for supercritical carbon dioxide Brayton cycles[J]. Power Equipment, 2017, 31(5): 305-309 doi: 10.3969/j.issn.1671-086X.2017.05.001
|
[5] |
段承杰, 杨小勇, 王捷. 超临界二氧化碳布雷顿循环的参数优化[J]. 原子能科学技术, 2011, 45(12):1489-1494. (Duan Chengjie, Yang Xiaoyong, Wang Jie. Parameters optimization of supercritical carbon dioxide Brayton cycle[J]. Atomic Energy Science and Technology, 2011, 45(12): 1489-1494
|
[6] |
Bell I H, Quoilin S, Wronski J, et al. CoolProp: An open-source reference-quality thermophysical property library[C]//ASME ORC 2nd International Seminar on ORC Power Systems. 2013.
|
[7] |
Witte F, Tuschy I. TESPy: Thermal Engineering Systems in Python[J]. Journal of Open Source Software, 2020, 5: 2178. doi: 10.21105/joss.02178
|
[8] |
Dostal V. A supercritical carbon dioxide cycle for next generation nuclear reactors[D]. Cambridge: Massachusetts Institute of Technology, 2004.
|
[9] |
Gibbs J P. Power conversion system design for supercritical carbon dioxide cooled indirect cycle nuclear reactors[D]. Cambridge: Massachusetts Institute of Technology, 2008.
|
[10] |
Balje O E. Turbomachines: A guide to design, selection and theory[M]. Hoboken: John Wiley & Sons, 1981.
|
[11] |
Sondelski B, Nellis G. Mass optimization of a supercritical CO2 Brayton cycle with a direct cooled nuclear reactor for space surface power[J]. Applied Thermal Engineering, 2019, 163: 114299. doi: 10.1016/j.applthermaleng.2019.114299
|
[12] |
Liao S M, Zhao T S. Measurements of heat transfer coefficients from supercritical carbon dioxide flowing in horizontal Mini/Micro channels[J]. Journal of Heat Transfer, 2002, 124(3): 413-420. doi: 10.1115/1.1423906
|