LD triggered three-electrode gas switch based on photoconductive semiconductor
-
摘要: 为实现激光二极管对气体开关的触发,采用从主回路开关两侧取电的基于光导开关一体化激光二极管触发气体开关结构,并对基于光导开关一体化激光二极管触发三电极气体开关进行了初步实验,实现了激光二极管输出能量83 µJ条件下40 kV/8 kA三电极气体开关的可靠触发,证明了技术可行性。但实验中的实测光导开关的工作寿命仅约数百次。Abstract: To trigger the gas switch with one fiber, a kind of LD (laser diode) triggered three--electrode gas switch based on photoconductive semiconductor without trigger charger source is presented in this paper. The principle of this switch is that a GaAs PCSS, which is triggered by LD, is used to control the trigger pulse generation of the trigger capacitor discharge circuit (CDC). The capacitor in CDC is charged with the energy of the main circuit directly. As a result, this switch can work without trigger charge power source, which means this switch can be made more compact compared with traditional electrical trigger switch. A prototype designed for three-electrode gas switch working under 40 kV/8 kA and PCSS triggered with 83 μJ laser energy is described in this paper in detail. The experimental result proves the feasibility of the switch. The experimental result also shows the life of the photoconductive semiconductor is just several hundred shots. The life of the photoconductive semiconductor will be improved in next phase of our research.
-
Key words:
- gas switch /
- LD trigger /
- photoconductive semiconductor /
- work life
-
表 1 不同触发光脉宽和能量的实验结果
Table 1. Results of different laser width and energy experiments
Vc/kV laser width/ns laser energy/μJ misfire delay/ns jitter/ns 40 90 83 0 312 28.5 40 45 41 1 314 29.1 40 22 19 9 361 93.0 -
[1] Bluhm H. 脉冲功率系统的原理与应用[M]. 江伟华, 张弛, 译. 北京: 清华大学出版社, 2008Bluhm H. Pulsed power systems: principles and applications[M]. Jiang Weihua, Zhang Chi, trans. Beijing: Tsinghua University Press, 2008 [2] 曾正中. 实用脉冲功率技术引论[M]. 西安: 陕西科学技术出版社, 2003Zeng Zhengzhong. Introduction to practical pulsed power technology[M]. Xi'an: Shaanxi Science and Technology Press, 2003 [3] Xu Ming, Liu Xiaofei, Li Mengxia, et al. Transient characteristics of interdigitated GaAs photoconductive semiconductor switch at 1-kHz excitation[J]. IEEE Electron Device Letters, 2019, 40(7): 1136-1138. doi: 10.1109/LED.2019.2916427 [4] Majda-Zdancewicz E, Suproniuk M, Pawłowski M, et al. Current state of photoconductive semiconductor switch engineering[J]. Opto-Electronics Review, 2018, 26(2): 92-102. doi: 10.1016/j.opelre.2018.02.003 [5] Luan Chongbiao, Feng Yuanwei, Huang Yupeng, et al. Research on a novel high-power semi-insulating GaAs photoconductive semiconductor switch[J]. IEEE Transactions on Plasma Science, 2016, 44(5): 839-841. doi: 10.1109/TPS.2016.2540161 [6] 吴朝阳, 陈志刚, 薛长江, 等. 激光二极管触发光导开关实验研究[J]. 强激光与粒子束, 2012, 24(3):635-638. (Wu Zhaoyang, Chen Zhigang, Xue Changjiang, et al. Experimental research on GaAs photoconductive semiconductor switches triggered by laser diode[J]. High Power Laser and Particle Beams, 2012, 24(3): 635-638 doi: 10.3788/HPLPB20122403.0635Wu Zhaoyang, Chen Zhigang, Xue Changjiang, et al. Experimental research on GaAs photoconductive semiconductor switches triggered by laser diode[J]. High Power Laser and Particle Beams, 2012, 24(3): 635-638,doi: 10.3788/HPLPB20122403.0635 [7] Zutavern F J, Loubriel G M, Hjalmarson H P, et al. Properties of high gain GaAs switches for pulsed power applications[C]//11th IEEE International Pulsed Power Conference. 1997: 959-964. [8] Glover S F, Zutavern F J, Swalby M E, et al. Pulsed- and DC-charged PCSS-based trigger generators[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2701-2707. doi: 10.1109/TPS.2010.2049662 [9] Zutavern F J, Glover S F, Reed K W, et al. Fiber-optically controlled pulsed power switches[J]. IEEE Transactions on Plasma Science, 2008, 36(5): 2533-2540. doi: 10.1109/TPS.2008.2004367 [10] Wang Langning, Jia Yongsheng, Liu Jinliang. Photoconductive semiconductor switch-based triggering with 1 ns jitter for trigatron[J]. Matter and Radiation at Extremes, 2018, 3(5): 256-260. doi: 10.1016/j.mre.2017.12.006 [11] Wang Zhiguo, Sun Fengju, Qiu Aici, et al. A 80 kV gas switch triggered by a 17 μJ fiber-optic laser[J]. Review of Scientific Instruments, 2020, 91: 056104. doi: 10.1063/1.5141924 期刊类型引用(5)
1. 李建林,雷广智,白杨,白冰,孙延笑. 电光-MoSe_2主被动双调Q 946 nm全固态激光器. 光子学报. 2018(05): 15-22 . 百度学术
2. 汪峰,田丰,武风波. 灯泵Cr, Nd:GSGG晶体热效应的有限元研究. 实验室研究与探索. 2018(11): 28-31 . 百度学术
3. 屈鹏飞,王石语,过振,蔡德芳,李兵斌. 热效应对激光器光束质量的自适应调整技术. 光学学报. 2017(05): 156-163 . 百度学术
4. 龚梦帆,肖光宗,于旭东,张斌. 一体化Y型腔正交偏振氦氖激光器的温度场仿真与实验. 红外与激光工程. 2016(05): 59-65 . 百度学术
5. 罗宽,王菲,车英,张国玉. 偏振变换法测量固体激光器的动态热焦距. 红外与激光工程. 2016(10): 239-243 . 百度学术
其他类型引用(11)
-